EtherLib/packet_sieve.c
Wiesner András ab8d45932f Timestamping and bunch of bugfix and optimization
- Timestamping management added
- Errors due to reading uninitialized data in ARP fixed
- EthInterface reworked, incoming packet notification and payload readout separated (through which fixing concurrent access problems)
- RX and TX offloads added
- Capability to add a packet sieve layer without prior registration of specific packet class added (this makes it possible to register arbitrary EtherType connection blocks, for example)
2023-04-27 09:38:26 +02:00

317 lines
11 KiB
C

//
// Created by epagris on 2022.11.06..
//
#include <stddef.h>
#include "packet_sieve.h"
#include "global_state.h"
#include "dynmem.h"
#include "utils.h"
bool packfiltcond_cmp(const PcktSieveFilterCondition *c1, const PcktSieveFilterCondition *c2) {
return !memcmp(c1, c2, sizeof(PcktSieveFilterCondition));
}
void packfiltcond_zero(PcktSieveFilterCondition *cond) {
memset(cond, 0, sizeof(PcktSieveFilterCondition));
}
PcktSieve* packsieve_new(EthInterface *intf) {
PcktSieve *sieve = (PcktSieve*) dynmem_alloc(sizeof(PcktSieve));
ASSERT_NULL(sieve);
memset(&sieve->layer0, 0, sizeof(PcktSieveLayer)); // clear layer0 data
sieve->intf = intf;
return sieve;
}
void packsieve_input(PcktSieve *sieve, const RawPckt *rawPckt) {
// extract fields
uint8_t *data = rawPckt->payload;
uint32_t size = rawPckt->size;
bool mrd = true; // 'Must Release Data': at the end of processing not only release headers but data buffer as well
restart: ;
// process payload, fetch packet class etc.
uint16_t ownClass = 0, containerClass = 0; // Ethernet...
uint16_t offset = 0;
PcktHeaderElement *lastHeader = NULL, *outermostHeader = NULL;
int procRet;
do {
// get packet descriptor
PcktClassDesc *cdesc = packreg_get_by_class(E.pcktReg, ownClass, containerClass);
if (cdesc == NULL) {
break;
}
// allocate property object
uint32_t hdrSize = ETH_PCKT_HEADER_ELEMENT_HEAD_SIZE + cdesc->propertySize;
// look for possible former allocated cache area
PcktHeaderElement *header = NULL;
if (cdesc->cacheSize < hdrSize) { // allocate cache area if previously allocated area is too small
dynmem_free(cdesc->cacheArea); // does nothing if cacheArea is NULL
cdesc->cacheArea = (uint8_t*) dynmem_alloc(hdrSize);
ASSERT_NULL(cdesc->cacheArea);
cdesc->cacheSize = hdrSize; // retain cache size
}
header = (PcktHeaderElement*) cdesc->cacheArea;
memset(header, 0, hdrSize);
header->props.ownPacketClass = ownClass;
header->props.propSize = cdesc->propertySize;
header->prev = lastHeader;
if (lastHeader) {
lastHeader->next = header;
}
if (outermostHeader == NULL) {
outermostHeader = header;
}
// call parsing function
PcktProcFnPassbackData pb;
procRet = cdesc->procFun(data + offset, size - offset, header, sieve->intf, &pb);
switch (procRet) {
case PROC_FN_RET_REPRST:
dynmem_free(data); // release previous packet data
data = pb.p; // store new packet data
size = pb.u;
mrd = pb.b;
// NO BREAK!
case PROC_FN_RET_ABORT:
goto header_release;
// GOTO :D!
break;
case PROC_FN_RET_OK:
default:
break;
}
uint16_t containedClass = header->props.containedPacketClass;
if (containedClass != 0) {
containerClass = ownClass;
//dynmem_free(props);
}
offset += header->props.headerSize;
header->props.accumulatedOffset = offset;
header->props.bytesToEnd = size - header->props.accumulatedOffset;
header->props.hdrInsFn = cdesc->hdrInsFn;
ownClass = containedClass;
lastHeader = header;
} while ((ownClass != 0) && lastHeader->props.validityOK);
if (lastHeader == NULL) { // if found nothing, don't attempt to process
goto data_release;
}
lastHeader->next = NULL;
// ------------------------------------
if (!lastHeader->props.validityOK) { // if packet is not valid, then drop
goto header_release;
// GOTO here!
}
Pckt packet;
packet.time_s = rawPckt->ext.rx.time_s;
packet.time_ns = rawPckt->ext.rx.time_ns;
// lookup headers in the sieve
const PcktHeaderElement *headerIter = outermostHeader;
PcktSieveLayer *layer = &sieve->layer0; // innermost matched sieve layer
bool found = true; // first structure is always an Ethernet-frame
while (found && headerIter) {
const PcktSieveLayer *nodeIter = layer->nodes;
found = false;
while (nodeIter && !found) {
found |= nodeIter->matchAny || nodeIter->filtFn(&nodeIter->filtCond, &headerIter->props, &headerIter->next->props, sieve->intf); // specific or general match
if (found) {
layer = nodeIter; // advance in the sieve tree
PcktHeaderElement *containedHeader = headerIter;
if (headerIter->next != NULL) {
containedHeader = containedHeader->next; // advance on headers
}
if (layer->cbFn != NULL) { // if defined, invoke layer callback function
offset = containedHeader->props.accumulatedOffset; // accumulated offset + own header size
packet.header = containedHeader;
packet.payload = data + offset;
packet.headerSize = offset;
packet.payloadSize = size - offset;
int action = layer->cbFn(&packet, layer->tag);
// execute special return action
switch (action) {
case SIEVE_LAYER_REMOVE_THIS:
packsieve_remove_layer(layer);
break;
default:
break;
}
}
headerIter = containedHeader;
} else {
nodeIter = nodeIter->next; // advance on linked list and continue search
}
}
}
// if there are no more sieve layers (cannot process headers further) BUT
// meaningful headers have been left unprocessed
// if (layer->next == NULL && headerIter) {
// INFO("Packet headers not fully processed!\n");
// }
// release header chain blocks
header_release: ; // empty line, solely for label placement
// PcktHeaderElement *iter = outermostHeader;
// while (iter != NULL) {
// PcktHeaderElement *next = iter->next;
// dynmem_free(iter);
// iter = next;
// }
if (procRet == PROC_FN_RET_REPRST) { // if a restart was requested, then run everything again!
goto restart;
}
data_release: ;
if (mrd) {
dynmem_free(data);
}
}
PcktSieveLayer* packsieve_new_layer(PcktSieveLayer *parent, const PcktSieveFilterCondition *filtCond, bool matchAny, SieveFilterFn filtFn, SieveCallBackFn cbFn, PcktSieveLayerTag tag,
uint16_t pcktClass) {
// search for matching layer
PcktSieveLayer *nodeIter = parent->nodes;
bool alreadyExists = false;
while (nodeIter != NULL && !alreadyExists) {
if ((packfiltcond_cmp(&nodeIter->filtCond, filtCond) || (nodeIter->matchAny && matchAny)) && (nodeIter->filtFn == filtFn)) { // if matching... [search for specific match OR any match]
alreadyExists = true;
} else {
nodeIter = nodeIter->next;
}
}
// if found, then return with the pointer to the existing layer
if (alreadyExists) {
return nodeIter; // OK
} else { // if allocation of a new layer is required
PcktSieveLayer *layer = (PcktSieveLayer*) dynmem_alloc(sizeof(PcktSieveLayer));
ASSERT_NULL(layer);
PcktSieveLayer *oldListFirst = parent->nodes;
layer->packetClass = pcktClass;
layer->parent = parent;
if (!matchAny || (oldListFirst == NULL)) { // for specific match or on first node insertion...
layer->prev = NULL;
parent->nodes = layer; // ...replace first element (it's the fastest way of new element insertion, since element position does not carry any meaning in general case)
layer->next = oldListFirst;
if (oldListFirst != NULL) {
layer->prev = layer;
}
} else { // for 'any' match if at least a single node is already present
PcktSieveLayer *iter = parent->nodes;
while (iter->next != NULL) { // find the last node
iter = iter->next;
}
iter->next = layer;
layer->prev = iter;
layer->next = NULL;
}
layer->nodes = NULL;
layer->filtCond = *filtCond;
layer->matchAny = matchAny;
layer->filtFn = filtFn;
layer->cbFn = cbFn;
layer->tag = tag;
layer->connBReportFn = NULL;
layer->txTsCb = NULL;
return layer;
}
}
bool packsieve_remove_layer(PcktSieveLayer *layer) {
// avoid NULL-operations
if (layer == NULL) {
return true;
}
// remove parent elements if their only subnode is the one we're deleting
PcktSieveLayer *parent;
while (layer != NULL && layer->nodes == NULL) {
parent = layer->parent; // store parent
// chain out our layer
if (layer->next == NULL && layer->prev == NULL) { // we are the only subnode
parent->nodes = NULL;
} else { // there are multiple subnodes, just chain us out
if (layer->next != NULL) {
layer->next->prev = layer->prev;
}
if (layer->prev != NULL) {
layer->prev->next = layer->next;
}
if (parent->nodes == layer) {
parent->nodes = layer->next;
}
}
dynmem_free(layer); // deallocate layer
layer = parent; // advance in the tree
}
return layer == NULL;
}
#define ETH_SIEVE_LAYER_INDENT_PER_LEVEL (4)
void packsieve_report(const PcktSieve *sieve, const PcktSieveLayer *layer, uint32_t indent) {
if (layer->connBReportFn != NULL) {
INFO("%*c└─┤", indent, ' ');
ConnBlock connBlock = { sieve, layer }; // tag not required
layer->connBReportFn(&connBlock);
INFO("├───\n");
} else {
INFO("%*c└─┤%d├───\n", indent, ' ', layer->packetClass);
}
const PcktSieveLayer *nodeIter = layer->nodes;
while (nodeIter) {
packsieve_report(sieve, nodeIter, indent + ETH_SIEVE_LAYER_INDENT_PER_LEVEL);
nodeIter = nodeIter->next;
}
}
void packsieve_layer_info(const PcktSieve *sieve, const PcktSieveLayer *layer) {
const PcktSieveLayer *iter = layer;
while (iter != NULL) { // climb up to the top in the sieve tree
if (iter->connBReportFn != NULL) {
ConnBlock connBlock = { sieve, iter }; // tag not required
iter->connBReportFn(&connBlock);
} else {
INFO("[%d]", layer->packetClass);
}
if (iter->parent != NULL) {
INFO(", ");
}
iter = iter->parent;
}
}
void pckthdr_chain_free(PcktHeaderElement *hdr) {
// rewind
while (hdr->prev != NULL) {
hdr = hdr->prev;
}
// free
PcktHeaderElement *next;
while (hdr != NULL) {
next = hdr->next;
dynmem_free(hdr);
hdr = next;
}
}