
 Electronics (Europe) GmbH

Distribution Software Documentation MS080929001 1/9

Date: 29. September, 2008
TO: Users of the freeRTOS port for
 NEC microcontroller
 78K0R/Kx3

Startup Sample for
78K0R/Kx3 Microcontroller

family freeRTOS
port

NEC-Electronics (Europe) GmbH

Technical Product Support
ABG.TPS.STS

Startup Sample for 78K0R/Kx3
Microcontroller family

FreeRTOS port

Revision History

Item Description/changes from the previous
version

Previous
Version

New
Version

Date

1. Initial Version - 1.0 29.09.2008

TPS Technical Product Support Page 1/9

 Electronics (Europe) GmbH

Table of contents

REVISION HISTORY ..1

TABLE OF CONTENTS..2

1. PURPOSE OF THIS DOCUMENT...3

2. ABBREVIATIONS..3

3. LICENSING ..3

4. INTRODUCTION ..3

5. PROGRAMMING ENVIRONMENT..4

6. USER DEFINED HARDWARE SETTINGS ...4
6.1 PREDEFINED HARDWARE SETTINGS:...4
6.2 CHANGING PREDEFINED SETTINGS ...4

6.2.1 Option and security byte definition ..4
6.2.2 Changing the Clock source ...5
6.2.3 Changing the Clock settings (using the internal high speed clock)5
6.2.4 Changing the Clock settings (using the external clock) ..5
6.2.5 Changing microcontroller memory mode ..5
6.2.6 Changing the TAU channel ...7
6.2.7 Changing the Switch Input Pin ..7
6.2.8 Changing P76 and P77 Pin functionality...7
6.2.9 Changing the tick count frequency..7

7. FUNCTIONS OF THE STARTUP SAMPLE ..7
7.1 MAIN.C..7

7.1.1 vErrorChecks...7
7.1.2 __low level init ...8

7.2 INT78K0R.C...8
7.3 POLLQ.C ..8

7.3.1 vPolledQueueProducer ...8
7.3.2 vPolledQueueConsumer ...8

7.4 SEMTEST.C ...8
7.5 LED.C..9

7.5.1 prvLEDInit..9
7.5.2 vLEDToggleTask1...9
7.5.3 vLEDToggleTask2...9

8. STACK COVERAGE WITHIN THE IAR EMBEDDED WORKBENCH.................................9

9. SUMMARY ...9

TPS Technical Product Support Page 2/9

 Electronics (Europe) GmbH

1. Purpose of this document
This document describes the Startup sample of the freeRTOS port for the NEC microcontroller
family 78K0R/Kx3. The function of the given sample is explained as well as the settings which
can be changed by the user to adjust the clock frequency or the microcontroller memory model
for example.

2. Abbreviations

Abbreviation Explanation
RTOS Real Time Operating System
TAU Timer Array Unit
TDR Timer Data Register
ISR Interrupt service routine
PC Program Counter
PSW Program Status Word
SP Stack Pointer
TCB Task Control Block
LED Light Emitting Diode
CPU Central Processing Unit

Table 1 Abbreviations

3. Licensing
FreeRTOS is licensed under a modified GPL and can be used in commercial applications under
this license. An alternative commercial license option is also available if required.
The FreeRTOS source code is licensed by the GNU General Public License (GPL) with an
exception. The full text of the GPL and the text of the exception are available on the
FreeRTOS.org web site.
The exception permits the source code of applications that use FreeRTOS solely through the
API published on the FreeRTOS.org web site to remain closed source, thus permitting the use
of FreeRTOS in commercial applications without requiring that the whole application be open
sourced.

4. Introduction
The freeRTOS.org project delivers a Real Time Operating System (RTOS), which can be ported
to a wide band of microcontrollers. In this function the RTOS can also be ported to the
78K0R/Kx3 microcontroller family of NEC Electronics.
The RTOS works by a scheduled task handling which uses a tick timer to control the task active
time. By the kernel two operating modes are predefined and can be selected. The first one is
the easiest implementation were only a task can deactivate itself to give other task processing
time, which is called cooperative mode. The second mode, called preemptive mode, uses in
adaption to the first mode the time triggered task interruption using the tick timer interrupt to
perform a task switch.
For further information about these freeRTOS kernel specific settings refer to the freeRTOS.org
homepage.
The given Startup Sample is designed as an easy introduction to this RTOS showing the
functionality of tasks, queues and semaphores.

TPS Technical Product Support Page 3/9

http://www.freertos.org/

 Electronics (Europe) GmbH

5. Programming environment
The given example is designed with the IAR Systems Embedded Workbench for NEC 78K0R
v4.60b. It is also checked on the older IAR Systems Embedded Workbench v4.50. For the
necessary software validation the NEC IECUBE and the Minicube2 using the 78K0R/KG3 target
board (QB-78K0RKG3-TB) was used. The Startup sample is designed to work with the given
peripherals on this target board like a Switch and 2 LEDs. It gives the user also the possibility
to expand the Startup sample with more tasks and a larger functionality because all
microcontroller pins are laid to connector strips where a lot more peripherals can be connected
to. This gives the opportunity to perform quiet a wide band of possible actions with the
freeRTOS.

6. User defined hardware settings
The Startup sample has a predefined hardware setting. This setting has to be checked with the
users given environment.

6.1 Predefined hardware settings:
• Option and security byte definition
• Using a external high speed clock of 20MHz
• Using the microcontroller far memory mode
• Using TAU (Timer Array Unit) Channel 5 for the RTOS tick generation (interval timer)
• P120/INTP0/EXLVI Pin as interrupt controlled input from the switch
• P76 and P77 as output pin controlling the LEDs
• RTOS tick count of 1ms

6.2 Changing predefined settings
When there is a need to change the whole or parts of the predefined settings use the following
guideline to perform these changes.

6.2.1 Option and security byte definition
To use the 78K0R/Kx3 the option and security bytes have to be set. This is done in the main.c
file in the Startup sample project. The Option bytes are predefined in the following way.

Option Byte address Option byte value Option byte function

0x000C0 0x00 Disabled watchdog timer
0x000C1 0xFE Low voltage indication enabled
0x000C2 0xFF Reserved area
0x000C3 0x81 On Chip debugging enabled

Table 2 Option Byte settings

And the security bytes are written 0xFFFFFFFFFFFFFFFFFFFF during the evaluation phase.

For further information about the option and security bytes initialization refer to the
corresponding chapters in the 78K0R/KG3 user’s manual.

TPS Technical Product Support Page 4/9

http://www.eu.necel.com/docuweb/index.php?fld_keyword=U17894&submit=Search

 Electronics (Europe) GmbH

6.2.2 Changing the Clock source
When you want to change the clock source from the external clock to the internal high speed
clock you have to change the configCLOCK_SOURCE in the FreeRTOSConfig.h from 0 to 1.

configCLOCK_SOURCE Function

0 Use external clock source
1 Use internal high speed clock

Table 3 Clock Source settings

6.2.3 Changing the Clock settings (using the internal high speed clock)
If the internal high speed clock is selected as shown above there are a few settings set can be
changed. The clock initialization can be found in the main.c __low_level_init function.
First you can activate or stop the subsystem clock. When the subsystem clock is enabled a
32.768 kHz resonator has to be connected to XT1 and XT2.

XTSTOP Function

0 Subsystem clock enabled
1 Subsystem clock disabled

Table 4 Subsystem Clock settings

The prescaler for the internal high speed clock can be changed to decrease the clock speed by
editing the value of the CKC register. For further information about system clock prescaling refer
to the 78K0R/KG3 user’s manual.

IMPORTANT: When changing the hardware clock settings to a certain frequency you have to
adjust the configCPU_CLOCK_HZ value in the FreeRTOSConfig.h to this value too, because
this value is used to calculate the Tick Timer compare value used for the RTOS Tick timer
interrupt.

6.2.4 Changing the Clock settings (using the external clock)
The initialization of the external clock source is a bit more complex then the one of the internal
high speed clock. This is caused by the fact that first the internal high speed clock is used to
bridge over the external clock stabilization time when the system is powered on.
After the stabilization time the external clock is set as system clock and further settings can be
made.
The subsystem clock can be activated or disabled the same way as described for the internal
high speed clock source settings above. If the external clock shall be decreased with the
prescaler edit the CKC register value.

IMPORTANT: When changing the hardware clock settings to a certain frequency you have to
adjust the configCPU_CLOCK_HZ value in the FreeRTOSConfig.h to this value too, because
this value is used to calculate the Tick Timer compare value used for the RTOS Tick timer
interrupt.

6.2.5 Changing microcontroller memory mode
The 78K0R/KG3 family provides two different memory modes. The first one is the near memory
mode in which only 64kbyte code and 64kbyte data can be addressed. Because only 16bit
pointers are used for addressing.

TPS Technical Product Support Page 5/9

http://www.eu.necel.com/docuweb/index.php?fld_keyword=78K0R%2FKx3&fld_issue_date=&fld_type=&submit=Search

 Electronics (Europe) GmbH

In opposition to that the far memory mode allows a addressing over the whole memory space of
the microcontroller. This is possible by using a 24bit address pointer.
The function calling convention is different between these two memory modes, what leads to a
different task stack layout needed by the freeRTOS.
To change the memory mode the only 2 things, that have to be changed by the user, are the
configMEMORY_MODE has to be edited in the FreeRTOSConfig.h file and the memory mode
must be selected in the IAR Embedded Workbench project options (Project options…
General Options Code model + Data model).

configMEMORY_MODEL Function

0 Use near memory model
1 Use far memory model

Table 5 Memory mode settings

The memory mode can also be chosen by using the #pragma directives __far/__near and
__far_func/__near_func. A more detailed introduction into using #pragma directives is given in
the IAR Embedded Workbench Compiler manual delivered with the corresponding IAR
Embedded Workbench IDE.

TPS Technical Product Support Page 6/9

 Electronics (Europe) GmbH

6.2.6 Changing the TAU channel
In case that the TAU channel 5 is needed by the user, for any reason, every other TAU channel
can be used for the Tick creation of the freeRTOS. The tick timer initialization can be found in
the prvSetupTimerInterrupt function located in the port.c file. For further information about the
TAU initialization refer to the corresponding section in the 78K0R/KG3 user’s manual.
The more complex part of changing the TAU channel is to change the ISR, because this is
written in assembler to give the maximum possible performance to the RTOS. The ISR can be
found in the portmacro.s26 file. First you have to find out where to find the position of the new
ISR in the interrupt vector table. Therefore you can refer to the corresponding chapter in the
78K0R/KG3 user’s manual.
And then write the start address of the ISR to this location.

6.2.7 Changing the Switch Input Pin
In the Startup sample which is designed for the 78K0R/KG3 target board the Pin
P120/INTP0/EXLVI is used with the INTP0 functionality, because the switch located on the
target board is connected there. If this Pin shall be used in a different mode the initialization
must be changed. This initialization can be found in the prvLEDInit function in the LED.c file.

6.2.8 Changing P76 and P77 Pin functionality
The Pins P76 and P77 are used as output pins in the startup sample because the two LEDs
LED01 and LED02 of the target board are connected to this Pins. When another function is
needed for these Pins the Initialization can be found in the prvLEDInit function in the LED.c file.

6.2.9 Changing the tick count frequency
The tick count is an essential part of the RTOS because it controls the task management. To
change the tick count frequency the user only has to edit the configTICK_RATE_HZ value in
the FreeRTOSConfig.h file. With the selected clock frequency the compare value for the tick
timer interrupt is calculated to generate the interrupt whenever the tick time compare value is
reached by the timer counter.

7. Functions of the Startup sample
As mentioned before in this document the Startup sample is written to show the user the
functionality of the freeRTOS based on a 78K0R/KG3 target board in an easy way. Based on
the possibilities that are given from the target board there will be some toggling LEDs and the
implementation of the given switch within an ISR. Furthermore there are some tasks in the
background that are used to produce some processor load and can not be seen at the target
board itself. All task and queue initializations are performed using the standard freeRTOS
functions xTaskCreate and xQueueCreate. To get further information about the freeRTOS
standard functions refer to the freeRTOS homepage.
A further description of the tasks and their functionalities follows now.

7.1 main.c
The main.c file includes the task creation for all installed tasks for the freeRTOS and the RTOS
scheduler is started from here by calling the vTaskStartScheduler. Furthermore the
vErrorChecks task is implemented in the main.c.

7.1.1 vErrorChecks
The only function of this task is to check if all other tasks are still running in the expected
behavior. To do this, the task is reentered every 3 seconds and then check if the task control

TPS Technical Product Support Page 7/9

http://www.eu.necel.com/docuweb/index.php?fld_keyword=78K0R%2FKx3&fld_issue_date=&fld_type=&submit=Search
http://www.eu.necel.com/docuweb/index.php?fld_keyword=78K0R%2FKx3&fld_issue_date=&fld_type=&submit=Search
http://www.freertos.org/

 Electronics (Europe) GmbH

parameters that are written in the corresponding tasks, have the value expected. If and error
occurs the error flag is set, but there is no further control sequence behind this flag that maybe
sets and LED or a port pin. So this flag can only be checked with a given debugger in the
Startup sample.

7.1.2 __low level init
This function implements the system clock initialization. How to change the clock behavior was
already described in this document.

7.2 Int78K0R.c
This file is a customized version of the standard integer.c sample file given by the freeRTOS.org.
It differs only in the allocated stack size, which can be reduced because there is no need of
such much stack space which is given for each IntMath task in the standard version and the
array size allocated in the functions vCompeteingIntMathTask3 and
vCompeteingIntMathTask4 for the tasks IntMath3, IntMath4, IntMath7 and IntMath8.
The tasks only perform some mathematical operation to create some processor load and use
some processing time on a low task priority. If a smaller device with less memory is chosen or
some other tasks shall be added this is a good position to save data memory space by deleting
the last 4 tasks (IntMath5 to IntMath8), because they have exactly the same behavior as the
first 4 tasks (for example IntMath1 has the same functionality as IntMath5).

7.3 PollQ.c
The PollQ.c is also a freeRTOS.org sample file. It shows the functionality of queues. Therefore
a producer and a consumer task are created as well as the needed queue. To create the queue
the xQueueCreate function is used.

7.3.1 vPolledQueueProducer
The producer task writes a value to the queue whenever it is enabled. After writing this value it
is incremented. If a problem occurs when trying to write the value to the queue an error flag is
set and can be found by the vErrorChecks task in the main.c file, which uses the given
xArePollingQueuesStillRunning function.

7.3.2 vPolledQueueConsumer
This task is the counter part to the producer task and reads the values out of the queue. If the
read value is not the expected one, an error occurs and will also be detected by the
vErrorChecks task using the xArePollingQueuesStillRunning function. The expected value is
just incremented every time the task is entered. So this control sequence is very simple in this
startup sample and only works because the producer and consumer task have the same
predefined yield time.

7.4 semtest.c
Here two sets of tasks are created and each set of tasks share one semaphore protected
variable. So when a task is entered it first tries to obtain the semaphore to be able to change
this variable. When the task gets the semaphore the value of this shared variable is checked if it
holds the expected value. If this is given the value is cleared to 0 and afterwards incremented
by 1 every program cycle until the value reaches the pre-cleared value again. After this value is
reached the tasks releases the semaphore again so that the other task of this task set can
perform exactly the same thing.

TPS Technical Product Support Page 8/9

 Electronics (Europe) GmbH

In the first set of tasks the semaphore is polled and in the second set the semaphore is blocked
by the corresponding block calls.
An error is flagged if at any time during the process a shared variable is found to have a value
other than that expected. Such an occurrence would suggest an error in the mutual exclusion
mechanism by which access to the variable is restricted. This error flag will be checked by the
xAreSemaphoreTasksStillRunning which is called within the vErrorChecks task.

7.5 LED.c
The LED.c file includes the target board specific task to toggle the both given LEDs of the
78K0R/KG3 target board. Also the initialization of the needed peripherals (LEDs and switch) is
implemented in this file. A queue to send the push counter of the switch is implemented.

7.5.1 prvLEDInit
Function to initialize the microcontroller pins connected to the LED01 and LED02 of the target
board as output ports and the pin connected to SW1 as input with internal pull-up resistor.

7.5.2 vLEDToggleTask1
This task switches the LED01 of the 78K0R/KG3 target board LED01 every second and
checking if this toggle has been executed.

7.5.3 vLEDToggleTask2
In this task the LED02 is toggled whenever the SW1 is pushed and an interrupt caused by this
push occurs. To realize this, a switch push count variable usClick is incremented every time the
switch is pushed within the ISR and is sent to a queue from there. It is read out by the
vLEDToggleTask2 task and whenever the new value of this counter differs from the old one in
the task the LED is switched.

8. Stack Coverage within the IAR Embedded Workbench
When using the FreeRTOS within the IAR Embedded Workbench for NEC there will be some
messages during debugging that the Stack is out of range. This leads from the fact that every
task has its own stack in a special memory area allocated during the task initialization. In future
there will be a C-SPY Plugin available which manages this Stack changing too. Until this time it
is advantageous to disable the stack coverage in the IAR Embedded Workbench.

9. Summary
This described Startup gives a first overview about how the freeRTOS works on an NEC
78K0R/KG3 device and therefore with the whole 78K0R/Kx3 microcontroller family. By just
using easy sample tasks it should be easy for the user to get into the topic and learn a bit more
about using freeRTOS. With using the 78K0R/KG3 target board a wide range of expansions of
the sample is possible and can be performed by the user.

TPS Technical Product Support Page 9/9

	1. Purpose of this document
	2. Abbreviations
	3. Licensing
	4. Introduction
	5. Programming environment
	6. User defined hardware settings
	6.1 Predefined hardware settings:
	6.2 Changing predefined settings
	6.2.1 Option and security byte definition
	6.2.2 Changing the Clock source
	6.2.3 Changing the Clock settings (using the internal high speed clock)
	6.2.4 Changing the Clock settings (using the external clock)
	6.2.5 Changing microcontroller memory mode
	6.2.6 Changing the TAU channel
	6.2.7 Changing the Switch Input Pin
	6.2.8 Changing P76 and P77 Pin functionality
	6.2.9 Changing the tick count frequency

	7. Functions of the Startup sample
	7.1 main.c
	7.1.1 vErrorChecks
	7.1.2 __low level init

	7.2 Int78K0R.c
	7.3 PollQ.c
	7.3.1 vPolledQueueProducer
	7.3.2 vPolledQueueConsumer

	7.4 semtest.c
	7.5 LED.c
	7.5.1 prvLEDInit
	7.5.2 vLEDToggleTask1
	7.5.3 vLEDToggleTask2

	8. Stack Coverage within the IAR Embedded Workbench
	9. Summary

