

FreeRTOS Port for Renesas M16C62P IAR Platform

Document Information

Document State Being Processed Submitted Accepted

Document Version 1.1

Creation Date 26. September 2008

Author Felix Daners, Felix Daners Engineering

Customer

Customer Responsible Person

Project Name

Customer Project Number

Subject FreeRTOS Port

Last Saved Date / File 26/09/2008 / FreeRTOS_IAR_M16C62P_v1.1.doc

Number of Pages Following this Page 17

Distribution List

Customer

Felix Daners Engineering F. Daners

Document Approvals

Felix Daners Engineering
Date

Signature

Date Signature

Auftraggeber
Date Signature

Date Signature

GNU Free Documentation License

Copyright (c) 2008 Felix Daners
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free
Documentation License, Version 1.2 or any later version published by the Free Software Foundation;

with the Invariant Sections being:
• Document Disclaimer

with the Front-Cover Texts being:
• The section «Document Information»

and with the Back-Cover Texts being:

Document Disclaimer

While every reasonable precaution has been taken in the preparation of this document, neither the author
nor Felix Daners Engineering assumes responsibility for errors or omissions, or for damages resulting from
the use of the information contained herein.
The information contained in this document is believed to be accurate. However, no guarantee is provided.
Use this information at your own risk.

1 / 17 26/09/2008 / FreeRTOS_IAR_M16C62P_v1.1.doc

Document History

Version Date Changed / Reason for Change Name

1.1 26/09/08 New Document Felix Daners

Abstract

FreeRTOS™ is a portable, open source, mini Real Time Kernel - a free to download and royalty free RTOS
that can be used in commercial applications. In this document a port to the M16C62P IAR Platform is intro-
duced.

FreeRTOS comes in three flavours:

The FreeRTOS source code is licensed by the GNU General Public License (GPL) with an exception. The ex-
ceptions permits the source code of applications that use FreeRTOS solely through the API published on the
FreeRTOS.org WEB site to remain closed source, thus permitting the use of FreeRTOS in commercial appli-
cations without necessitating that the whole application be open sourced. The exception should only be used
if you wish to combine FreeRTOS with a proprietary product and you comply with the terms stated in the
exception itself.
OpenRTOS is a commercially licensed version of FreeRTOS.org. The OpenRTOS license does not contain any
references to the GPL.
SafeRTOS is a derivative version of FreeRTOS.org that has been analyzed, documented and tested to meet
the stringent requirements of the IEC 61508 safety standard. Complete safety lifecycle documentation arte-
facts have been created and independently audited to verify IEC 61508 SIL 3 conformance.

For further licensing information refer to the FreeRTOS WEB site www.freertos.org.

2 / 17 26/09/2008 / FreeRTOS_IAR_M16C62P_v1.1.doc

Table of Content

1 Introduction ___6
2 Task Stack Layout and Creation___6
3 Task Switching Primitives__7
4 Interrupt Nesting __11
5 System Tick Timer ___14
6 User Interrupt Handler ___15
7 Starting/Stopping the OS__17

List of Figures

Figure 1 Task stack layout___ 6
Figure 2 Interrupt- and User Stack Situation at Entry to Interrupt Service _____________________ 8
Figure 3 Task context saving ___ 9
Figure 4 Interrupt priority levels ___ 11
Figure 5 RTOS nested interrupt prologue and epilogue ____________________________________ 13

3 / 17 26/09/2008 / FreeRTOS_IAR_M16C62P_v1.1.doc

References

[1] FreeRTOS, OpenRTOS V5.0.2 (www.freertos.org)

[2] Renesas, M16C/62P Group (M16C/62P, M16C/62PT) Hardware Manual, Rev. 2.4.1

[3] IAR, M16C/R8C IAR Assembler Reference Guide for Renesas M16C/1X–3X, 6X and R8C Series of
CPU Cores.

[4] IAR, M16C/R8C IAR C/C++ Compiler Reference Guide for Renesas M16C/1X–3X, 6X, and R8C Series
of CPU Cores

[5] Renesas, M16C/60, M16C/20 Series Software Manual Rev. 4.00

Compiler/Assembler Versions:

IAR Assembler for M16C 3.21A/W32 (3.21.1.4)

IAR C/C++ Compiler for M16C 3.21D/W32 (3.21.4.4)

IAR XLINK 4.60E (4.60.5.0)

Renesas M16C Simulator Debugger that comes with the C compiler package
M3T-NC30WA V.5.44 Release 00

Abbreviations

TCB Task Control Block

RTOS Real Time Operating System

4 / 17 26/09/2008 / FreeRTOS_IAR_M16C62P_v1.1.doc

1 Introduction
This port includes the following features:
• Separate Interrupt Stack (ISTACK), task stacks need not to save space for

interrupt handlers.
• Interrupt nesting model that allows for interrupts running without RTOS

interaction and a set of priority levels of RTOS handled interrupt service
routines that also may nest.

• Delayed task switch until last interrupt nesting level is about to return.
• Simple compile time registration of custom interrupt service routines.
• All TCB's and stacks must be located within the 16 bit RAM address space.

2 Task Stack Layout and Creation
Figure 1 shows the layout of a task stack. When a task is created, the function
xTaskCreate calls pxPortInitialiseStack.

FLGH,PCH | FLGL

PCM,PCL

FB

SB

A1

A0

R3

R2

R1

R0

free task stack

free task stackTask Control Block

remaining
CPU

registers

Task Stack
Pointer

Stack grows
from top to
bottom

16 bits wide

Task Stack Size in
Bytes
2*usStackDepth

restored
on

REIT
instruction

Pointer to
Task Code
pxCode

Pointer to Task
Parameter
pvParameters

Pointer to Task
Stack Top
pxTopOfStack

Task Handle
pxCreatedTask

Figure 1 Task stack layout

xTaskCreate allocates memory for the task control block and the task stack. It then
initializes both memory blocks and adds the newly created task control block to the
appropriate task list.

5 / 17 26/09/2008 / FreeRTOS_IAR_M16C62P_v1.1.doc

portSTACK_TYPE __data16 *pxPortInitialiseStack(
 portSTACK_TYPE __data16 *pxTopOfStack,
 pdTASK_CODE pxCode,
 pdTASK_PARAM pvParameters)
{
 /* select user stack, enable interrupt, set interrupt level to kernel */
 portSTACK_TYPE flag = 0x0040 | 0x0080 | (configKERNEL_INTERRUPT_PRIORITY<<12);

 pxTopOfStack--;

 /* | FLG(H) | PC(H) | FLG(L) | */
 *pxTopOfStack-- = (flag & 0x00FF)
 | (((unsigned portLONG)pxCode >> 8) & 0x00000F00)
 | ((flag << 4) & 0xF000);

 /* | PC(M) | PC(L) | */
 *pxTopOfStack-- = (portSTACK_TYPE)(((unsigned portLONG)pxCode) & 0x0000FFFF);

 /* | FB | */
 *pxTopOfStack-- = (portSTACK_TYPE)0xFBFB;

 /* | SB | */
 *pxTopOfStack-- = (portSTACK_TYPE)0x3B3B;

 /* | A1 | */
 *pxTopOfStack-- = (portSTACK_TYPE)0xA1A1;

 /* | A0 | */
 *pxTopOfStack-- = (portSTACK_TYPE)0xA0A0;

 /* | R3 | */
 *pxTopOfStack-- = (portSTACK_TYPE)0x3333;

 /* | R2 | */
 *pxTopOfStack-- = (portSTACK_TYPE)((unsigned portLONG)pvParameters >> 16L);

 /* | R1 | */
 *pxTopOfStack-- = (portSTACK_TYPE)0x1111;

 /* | R0 | */
 *pxTopOfStack = (portSTACK_TYPE)((unsigned portLONG)pvParameters & 0x0000FFFFL);

 return pxTopOfStack;
}

3 Task Switching Primitives

Task switching is done in five steps:
• Execute yield interrupt sequence. See portYIELD() and Figure 2.
• Save the context of the interrupted running task. See Figure 3.
• Select the new task to run, make it the new current task.

Done by calling vTaskSwitchContext().
• Restore the context of the new current task.
• Return from yield interrupt by executing a REIT instruction.

Task switching is initiated by calling portYIELD(). This macro uses an intrinsic func-
tion to fire the software interrupt vector portYIELD_VECTOR. portYIELD_VECTOR is defined
as vector 1. On the M16C microcontroller, software interrupts are non-maskable.

#define portYIELD_VECTOR 1

/* this is non maskable! always yields even if I flag cleared */
#define portYIELD() { __software_interrupt(portYIELD_VECTOR); }

The M16C interrupt execution sequence is as follows:

• The CPU obtains interrupt information (interrupt number and interrupt re-

quest level) by reading address 000000h. Then, the IR bit applicable to the
interrupt information is set to “0” (interrupt requested).

6 / 17 26/09/2008 / FreeRTOS_IAR_M16C62P_v1.1.doc

• The FLG register, prior to an interrupt sequence, is saved to a temporary
register within the CPU.

• The I, D and U flags in the FLG register become as follows: the I flag is set
to “0” (interrupt disabled), the D flag is set to “0” (single-step interrupt dis-
abled), the U flag is set to “0” (ISP selected). However, the U flag does not
change state if an INT instruction for software interrupt numbers 32 to 63
is executed.

• The temporary register within the CPU (with the saved FLG values) is
saved to the stack.

• The PC is saved to the stack.
• The interrupt priority level of the acknowledged interrupt in IPL is set.
• The start address of the relevant interrupt routine set in the interrupt vec-

tor is stored in the PC.

The handler for the interrupt that is called from portYIELD() expects the U flag to be
cleared during interrupt execution sequence. Therefore software interrupts with
vectors 32-64 are not allowed as yield interrupt.

#if portYIELD_VECTOR > 31
 #error "portYIELD_VECTOR must be < 32 (we expect FLG, PCH, PCM, PCL on ISTACK)"
#endif

From the interrupt execution sequence described above, at entry of yield interrupt
handler we find the situation on task and interrupt stack as depicted in Figure 2.

USP

previous stack

FLGH,PCH | FLGL

PCM, PCL

initial task stack

initial task stack

ISP

previous stack

previous stack

previous stack

free stack

free stack

free stack

free stack

free stack

free stack

 Top of curr. Task

free stack

free stack

ISTACK Stop 16 bits wide 16 bits wide

Task Stack
Size
2*Stack Depth

ISTACK Size
2*Stack Depth

Interrupt Stack Current Task Stack

Figure 2 Interrupt- and User Stack Situation at Entry to Interrupt Service

The context of the current task is to be saved on the current task stack. This is
done in four steps as also shown in Figure 3:

7 / 17 26/09/2008 / FreeRTOS_IAR_M16C62P_v1.1.doc

• The flag state and program counter saved on the interrupt stack during
the interrupt execution sequence must be moved to the current task stack.
This is most simply done by PUSH instructions with the U flag set because
this implicitly allocates the required space from the task stack. (Marked
with circle with number 1 in Figure 3)

• Save the remaining CPU registers on the task stack, using a PUSHM instruc-
tion. (2 in Figure 3)

• Now USP needs to be saved in the current task control block to be re-
stored, when the this task is switched in again. (3 in Figure 3)

• The flag state and program counter on the interrupt stack are no longer
used and need to be freed from the interrupt stack. (4 in Figure 3)

• Reactivate the interrupt stack, so interrupt service does not use task
stack.

previous stack

FLGH,PCH | FLGL

PCM,PCL

FB

SB

A1

A0

R3

R2

R1

R0
USP after alloc

initial task stack

initial task stack

free stack

free stack

Top of curr. Task

previous stack

FLGH,PCH | FLGL

PCM,PCL

ISP after free

previous stack

previous stack

free stack

free stack

ISTACK Top

Saved
Task
Context

save
remaining
CPU
registers

USP

Current Task
Control Block
pxCurrentTCB

Task Control Block
Task Stack Pointer

1

2

ISP

3

4

16 bits wide16 bits wide

copy to
current task
control block

copy to
currrent task
stack

free to
ISTACK
ISP += 4

implicite
alloc from

current
task stack

(PUSH)

Interrupt Stack Current Task Stack

Current Task Control Block

Figure 3 Task context saving

The advantage of this method is, that interrupt service routines can use their own
stack (ISTACK) and do not rely on the stack of any switched out task. If the interrupt
service routine used the stack of the switched out task, the interrupt stack space
needs to be allocated on each task stack in addition to stack space the task re-
quires for its own purpose. This is would not be a very economic memory usage.

8 / 17 26/09/2008 / FreeRTOS_IAR_M16C62P_v1.1.doc

Find the assembler code below which implements step 1-4 shown in Figure 3.

 ; SAVE TASK CONTEXT --
 ; see stack frame in port.c
 MACRO save_context ; Must copy saved registers from interrupt stack
 ; to user stack and save remaining registers
 ; we come here with U flag cleared CYCLES
 PUSHC FB ; save FB to interrupt stack 2
 FSET U ; activate the task stack 2
 PUSHC ISP ; Load ISP to FB, using task stack 2
 POPC FB ; as temp 3

 ; now push PCL,PCM,PCH,FLAGL and FLAGH to task stack
 PUSH.W:G 4:8[FB] ; | FLG(H) | PC(H) | FLG(L) | 4
 PUSH.W:G 2:8[FB] ; | PC(M) | PC(L) | 4
 PUSH.W:G 0:8[FB] ; | FB(H) | FB(L) | 4

 PUSHM R0,R1,R2,R3,A0,A1,SB; 14
 ; now save the user stack pointer in
 ; the current task control block
 ; the TCB is always near (16bit) memory
 MOV.W pxCurrentTCB,A0; 2
 STC SP,[A0]; 2
 FCLR U ; activate the interrupt stack 2
 ADD.W #6,SP ; free from ISP the PC(L,M,H), FLG(L,H) and FB 1
 ; (moved to the task stack before)
 ENDM ; total 42
 ; 1.75us@24MHz

Selection of the task to switch in is not part of the port and is done by calling the
RTOS function vTaskSwitchContext().

Restoring the context of the new task is done by loading USP from the new current
task control block followed by POPM.

 ; RESTORE TASK CONTEXT ---
 ; see stack frame in port.c
 MACRO restore_context; task context is on user stack CYCLES
 FSET U ; activate the user stack 2
 ; set user stack pointer to current task
 ; the TCB is always near (16bit) memory
 MOV.W pxCurrentTCB,A0; 2
 LDC [A0],SP ; restore the task stack pointer 3
 POPM R0,R1,R2,R3,A0,A1,SB,FB; 16
 ; load the CPU registers from the task stack
 ; PC(L,M,H), FLG(L,H) are restored when REIT
 ; completes the context restore
 ENDM ; total 21
 ; 0.85us@24MHz

After the context is restored, a REIT with U flag set returns to the switched in task.

The code for the yield handler needs to consider two cases:
• The yield interrupt has been called from an interrupt service, this means

the nesting level at entry is not equal to zero.
• The yield interrupt has fired from a running task. In this case the nesting

level at entry equals zero.

When the nesting level is not zero at entry, the task selection is delayed until the
last interrupt returns. The yield handler only sets a flag intTaskSwitchPending.

When the nesting level is zero, the yield interrupt needs to save the context of the
interrupted task, call the task selection routine, restore the context of the new task
and execute a REIT instruction.

Interrupt nesting is explained later in chapter »Interrupt Nesting«.

9 / 17 26/09/2008 / FreeRTOS_IAR_M16C62P_v1.1.doc

 RSEG CODE:CODE:REORDER:ROOT(0)
portYieldInterrupt:
 CMP.B #0,intNesting ; do not reinable interrupts here,
 ; we do not nest from this int.
 ; so ++intNesting not required
 JNE portYieldInterrupt_0; If intNesting > 0, no task switch
 ; task switch when lower priority int returns
 save_context ;
 JSR.A vTaskSwitchContext;
 restore_context ;
 REIT ; return to switched in task
 portYieldInterrupt_0: ; intNesting is not 0at entry
 MOV.W #0xFFFF,intTaskSwitchPending;
 ; only set flag to remember new task
 ; selection required when last ongoing
 ; interrupt terminates
 REIT;

 ; interrupt vector for YIELD
 COMMON INTVEC:HUGECONST:ROOT(0)
 ORG portYIELD_VECTOR*4
??portYieldInterrupt??INTVEC??:
 DC24 portYieldInterrupt;

4 Interrupt Nesting

To support interrupt nesting with minimal overhead, interrupt nesting and task se-
lection is controlled with the help of two variables intTaskSwitchPending and intNest-
ing. This allows for task selection to be delayed until the last of the nested ongoing
interrupts complete.

 ; keep track of pending task switches
 ; cleared when interrupt prologue executed with intNesting==0 at entry
 ; set from tick timer interrupt when intNesting != 0 at entry
 ; set from yield interrupt when intNesting != 0 at entry
 ; set from user isr handler with the macro portEND_SWITCHING_ISR
 RSEG DATA16_N:NEARDATA:NOROOT(1)
 EVEN
intTaskSwitchPending:
 DS16 1

 ; keep track on the interrupt nesting
 ; Incremented in interrupt entry code
 ; Decremented in interrupt exit code
 RSEG DATA16_N:NEARDATA:NOROOT(1)
 EVEN
intNesting:
 DS8 1

Further the eight interrupt levels of the M16C are split into three groups.

7 (highest)

6

5

4

3

2

1

0 (lowest)

Interrupt Priority Levels

Interrupts with this priority
levels are not under RTOS
control. They must not call
any RTOS API function. They
nest with levels of the other
groups

Interrupts with this priority
levels under RTOS control.
They can nest and may call
RTOS light weight API
functions that end with
FromISR()

The priority the kernel is
running. From within here all
API functions are allowedconfigKERNEL_INTERRUPT_PRIORITY

configMAX_SYSCALL_INTERRUPT_PRIORITY

Figure 4 Interrupt priority levels

10 / 17 26/09/2008 / FreeRTOS_IAR_M16C62P_v1.1.doc

From this, we can define critical sections for the RTOS differently than just disabling all
interrupts. We only need to disable interrupts that might call a RTOS API function.

#pragma inline=forced
 static portBASE_TYPE portSetInterruptMaskFromISR(void)
 {
 portBASE_TYPE r = __get_interrupt_level();
 __set_interrupt_level(configMAX_SYSCALL_INTERRUPT_PRIORITY);
 return r;
 }
#endif
#define portSET_INTERRUPT_MASK_FROM_ISR() portSetInterruptMaskFromISR()
#define portCLEAR_INTERRUPT_MASK_FROM_ISR(uxSavedStatusRegister) \
{ \
 __set_interrupt_level((unsigned char)uxSavedStatusRegister);\
}

/* Critical section management. */
#define portDISABLE_INTERRUPTS() {__set_interrupt_level(configMAX_SYSCALL_INTERRUPT_PRIORITY);}
#define portENABLE_INTERRUPTS() {__set_interrupt_level(configKERNEL_INTERRUPT_PRIORITY);}

Another variant of the same concept is the portENTER_CRITICAL portEXIT_CRITICAL im-
plementation:

/* be careful, the current state is stored on the stack! when use, make sure to have matching */
/* ENTER/EXIT pairs that do not mess up the stack. DO NOT: */
/* portENTER_CRITICAL(); */
/* { int test; // allocated on the stack! */
/* portLEAVE_CRITICAL(); */
/* return; */
/* } */

#define portENTER_CRITICAL() \
{ \
 { /* to enforce the rule, open a new scope here, close it in portEXIT_CRITICAL */ \
 asm("PUSHC FLG");\
 __set_interrupt_level(configMAX_SYSCALL_INTERRUPT_PRIORITY);\
}
#define portEXIT_CRITICAL() \
{ \
 asm("POPC FLG");\
 } /* close the scope opened in portENTER_CRITICAL */\
}

With this definition, interrupts from the highest priority group are never locked out.
Interrupts from the group that call the light weight API functions (FromISR(..)) need
prologue and epilogue around the handler code that keeps track of the interrupt
nesting level and postpones task selection until the nesting level reaches zero. This
is depicted in Figure 5. The assembler code for prologue and epilogue you find below.

 ; ENTRY CODE FOR USER INTERRUPT --
 ; to be executed in each user interrupt
 ; check if nested interrupt. If nested, do not save task context
 ; if iterrupt has interrupted a task, save task context
 MACRO user_interrupt_prologue
 LOCAL user_interrupt_prologue_0
 LOCAL user_interrupt_prologue_1
 INC.B intNesting;
 CMP.B #1,intNesting; intNesting was zero at entry, save task context
 ; clear intTaskSwitchPending
 JEQ user_interrupt_prologue_0
 PUSHM R0,R1,R2,R3,A0,A1,SB,FB; intNesting not zero,
 ; save context of interrupt being processed
 JMP user_interrupt_prologue_1
 user_interrupt_prologue_0:
 MOV.W #0,intTaskSwitchPending; Interrupts are not yet enabled, save
 save_context;
 user_interrupt_prologue_1:
 MOV.W #intTaskSwitchPending,R0; Pass 16 bit address of intTaskSwitchPending
 ; to isr, calling convention is __simple
 FSET I; Interrupts above the one running allowed
 ENDM

11 / 17 26/09/2008 / FreeRTOS_IAR_M16C62P_v1.1.doc

/* increment nesting level */
intNesting++

intTaskSwitchPending = 0;
/* save task context */

save_context

/* simple C calling
 convention. pass addr. */

R0 = &intTaskSwitchPending
/* enable interrupts */

FSET I

/* no more RTOS interrupts */
LDIPL #M_SYSC_IPL

/* decrement nesting level */
intNesting--

/* User ISR Handler*/
/* ends with call to */

portEND_SWITCHING_ISR
/* to set intTaskSwitchPending if

required */

/* restore task context */
restore_context

/* select task to switch in */
vTaskSwitchContext();

execute REIT instruction

/* save CPU registers on
interrupt stack */

PUSHM Rx,Ax,SB,FB

/* restore CPU registers from
interrupt stack */

POPM Rx,Ax,SB,FB

In
te

rr
up

t p
ro

lo
gu

e

interrupt sequence executed

ha
nd

le
r

In
te

rr
up

t e
pi

lo
gu

e

intNesting == 1 intNesting > 1

intNesting > 0intNesting == 0

intTaskSwitchPending == 0

intTaskSwitchPending != 0

&intTaskSwitchPending

Saves task state on task
stack, reactivates
interrupt stack

#define M_SYSC_IPL \
 configMAX_SYSCALL_INTERRUPT_PRIORITY

Uses interrupt
stack

Pointer to
intTaskSwitchPending

Activates task
stack

At entry, interrupt
stack is active

Figure 5 RTOS nested interrupt prologue and epilogue

12 / 17 26/09/2008 / FreeRTOS_IAR_M16C62P_v1.1.doc

 ; EXIT CODE FOR USER INTERRUPT --
 ; to be executed in each user interrupt
 ; If nested, the previous interrupt context is on the Interrupt stack
 ; If not nested, the context of the task to activate needs to be
 ; restored on the user stack

 MACRO user_interrupt_epilouge
 LOCAL user_interrupt_epilouge_0
 LOCAL user_interrupt_epilouge_1
 LOCAL user_interrupt_epilouge_2

 ; this macro is immedeately after the handler function returns.
 ; do switch
 LDIPL #configMAX_SYSCALL_INTERRUPT_PRIORITY; No more
 ; interrupts that use os
 CMP.B #0,intNesting; Just to make save. This never is the case
 JEQ user_interrupt_epilouge_0
 DEC.B intNesting;
 user_interrupt_epilouge_0:
 JNZ user_interrupt_epilouge_1; Other interrupt is running
 CMP.W #0,intTaskSwitchPending; Last interrupt check if task
 ; switch is pending
 JEQ user_interrupt_epilouge_2; No task switch pending
 JSR vTaskSwitchContext; Do the task switch
 user_interrupt_epilouge_2:
 restore_context; Restore switched in task context
 REIT
 user_interrupt_epilouge_1:
 POPM R0,R1,R2,R3,A0,A1,SB,FB; Restore last interrupt context
 REIT
 ENDM

5 System Tick Timer

The RTOS needs to track system time to implement task sleep delays, timeouts of
blocking functions and pre-emptive multitasking. The system timer also needs to
handle interrupt nesting. At every time tick the RTOS should select the next task (of
same or higher task priority level). This simplifies the prologue and epilogue of the
handler. For more details about interrupt nesting see chapter 4.

The following two functions install and uninstall timer M16C B0 as system tick
timer.

/** set ms timer function */
/* This routine setups timer 1 and clears timer flag */
static void rtos_tick_timer_uninstall(void)
{
 tb0s = 0x00; // stop timer B0 (count flag)
}

/** set ms timer function */
/* This routine setups timer B0 and clears timer flag */
static void rtos_tick_timer_install(void)
{
 /* this function is called before interrupts are enabled */

 TB0MR = 0x40; // XXXX XXXX
 // |||| ||++- operation mode: 00: timer 01: event counter 10:one shot timer 11: PWM
 // |||| |+--- pulse output at pin TA4out 0: OFF 1: ON
 // |||| +---- gate function: 0: timer counts only when TA0in is "L", 1: .. is "H"
 // |||+------ gate function 0: not available 1: available
 // ||+------- must always be 0 in timer mode
 // ++-------- count source select bits: 00:f1 01:f8 10:f32 11:fc32

 TB0 = 1500-1; // 1ms resolution @ 12MHz f8
 tb0s = 0x01; // start timer B0 (count flag)
 TB0IC = configMAX_SYSCALL_INTERRUPT_PRIORITY;// interrupt priority level select bit 0...7
}

The interrupt handler function is written in assembler:

13 / 17 26/09/2008 / FreeRTOS_IAR_M16C62P_v1.1.doc

 ; SYSTEM TICK INTERRUPT HANDLER --
 ; if interrupt nesting level is 0 at entry, do task switch
 ; if interrupt nesting level is greater 0 at entry, set
 ; intTaskSwitchPending and do increment system timer only
 RSEG CODE:CODE:REORDER:ROOT(0)
portTimerB0Interrupt:
 ;PUSHM R0;
 INC.B intNesting;
 CMP.B #1,intNesting; yes do the task switch
 JNE portTimerB0Interrupt_0
 FSET I; allow interrupts
 save_context;
 JSR.A vTaskIncrementTick;
 LDIPL #configMAX_SYSCALL_INTERRUPT_PRIORITY;
 MOV.B #0,intNesting; We end up here only when int nesting was zero
 ; at entry.
 ; Select the task to switch in, restore its context
 ; and do the REIT to resume the task
 JSR.A vTaskSwitchContext;
 restore_context;
 REIT
 portTimerB0Interrupt_0: ; intNesting not 1, do not select task,
 ; do not save task context
 ; set intTaskSwitchPending so task selection
 ; is done when interrupt epilogue of last
 ; ongoing interrupt is executed
 MOV.W #0xFFFF,intTaskSwitchPending;
 FSET I ; Allow interrupts, save CPU registers on ISTACK
 PUSHM R0,R1,R2,R3,A0,A1,SB,FB;
 JSR.A vTaskIncrementTick;
 LDIPL #configMAX_SYSCALL_INTERRUPT_PRIORITY;
 ; now now more interrupt nesting
 CMP.B #0,intNesting ; Just to make save. This cannot be true
 JEQ portTimerB0Interrupt_1;
 DEC.B intNesting;
 portTimerB0Interrupt_1:
 POPM R0,R1,R2,R3,A0,A1,SB,FB;
 REIT

 ; interrupt vector 26 for timer B0, system tick
 COMMON INTVEC:HUGECONST:ROOT(0)
 ORG 4*26
??portTimerB0Interrupt??INTVEC_26:
 DC24 portTimerB0Interrupt;

6 User Interrupt Handler

User Interrupt handlers that use the RTOS lightweight API (the functions that end
with FromISR(..)) are defined at compile time using three macros. First, the name of
the handler function is to be bound to an interrupt vector. This needs to be done in
the project specific FreeRTOSConfig.h header file.
The macros to define are USER_ISR_VECTOR_nn, where nn is the decimal vector number
from the interval 0 to 31. Use a leading zero for vectors < 10.

// FreeRTOSConfig.h
// The name of the handler function for vector 30 is sl811_isr
#define USER_ISR_VECTOR_30 sl811_isr

This define enables a section in the port file asm_func.s34 which defines prologue,
epilogue and the vector table entry for the handler function. The assembler file has
a section for each supported interrupt vector. Following the code that implements
nesting prologue and epilogue as explained in chapter »Interrupt Nesting«.

14 / 17 26/09/2008 / FreeRTOS_IAR_M16C62P_v1.1.doc

; asm_func.s34
 ;USER INTERRUPT 30 VECTOR TABLE AND HANDLER CODE
#ifdef USER_ISR_VECTOR_30
 EXTERN USER_ISR_VECTOR_30
 PUBLIC ??USER_ISR_VECTOR??INTVEC_30

 RSEG CODE:CODE:REORDER:ROOT(0)
 userIsrVector30:
 user_interrupt_prologue;
 JSR.A USER_ISR_VECTOR_30; call the service routine
 user_interrupt_epilouge;
 REIT;

 COMMON INTVEC:HUGECONST:ROOT(0)
 ??USER_ISR_VECTOR??INTVEC_30:
 ORG 30*4;
 DC24 userIsrVector30;
 DC8 0;

 #undef USER_ISR_VECTOR_30
#endif

Next, the prototype for the handler can be defined in any project file using another
macro:

// my_isr.c
portINTERRUPT_HANDLER_PROTO(sl811_isr);

The implementation of the handler function is done in any project file as following
snipped shows:

// my_isr.c
portINTERRUPT_HANDLER(sl811_isr)
{
 portBASE_TYPE xHigherPriorityTaskWoken;

 /* handler code */
 …
 …
 /* call a lightweigth API function */
 xQueueSendFromISR(hQueue, &m, &xHigherPriorityTaskWoken);
 portEND_SWITCHING_ISR(xHigherPriorityTaskWoken);
}

This shows the way the handler tells the interrupt epilogue if the task selection
routine needs to be run.
The implementation is simple. When the handler is called from the port file
asm_func.s34 it passes a pointer to the variable intTaskSwitchPending (see chapter
»Interrupt Nesting«) from that same module in R0. This meets the specification for
the M16C simple calling convention as defined in [4]. Because the handler calls are
enclosed with appropriate prologue and epilogue, they do not need to save any
processor registers and therefore can have the attribute __task (see [4]).

#define portINTERRUPT_HANDLER_PROTO(isrFunction) \
 __task __simple void isrFunction (pdISR_PARAM pxSwitchRequired__)
#define portINTERRUPT_HANDLER(isrFunction) \
 __task __simple void isrFunction (pdISR_PARAM pxSwitchRequired__)

The value returned is set from the macro portEND_SWITCHING_ISR. Do not assign a
value to the parameter pxSwitchRequired__ directly, more exact do not initialize this
parameter with zero in your handler. If the handler is called while another lower
priority interrupt is ongoing, the lower priority interrupt could already have re-
quested a task switch. That is why the |= operator is used to modify the value in the
macro portEND_SWITCHING_ISR.

15 / 17 26/09/2008 / FreeRTOS_IAR_M16C62P_v1.1.doc

#define portEND_SWITCHING_ISR(xSwitchRequired) \
 if (1) {(*pxSwitchRequired__) |= xSwitchRequired;} else ((void)0)

7 Starting/Stopping the OS

Starting the RTOS requires some actions:
• Install the tick timer.
• Save the flag register.
• Push the processor registers to the active stack.
• Save the user stack pointer.
• Save interrupt stack pointer.
• Set intNesting to 0. See »Interrupt Nesting«
• Do a restore_context as explained in »Task Switching Primitives« followed

by a REIT instruction.

Interrupts with a priority equal or lower to configMAX_SYSCALL_INTERRUPT_PRIORITY (see
chapter »Interrupt Nesting«) should not be on when the RTOS is about to start. In-
terrupts are enabled when the context of the first task is restored. See chapter
»Task Stack Layout and Creation« for details about the initial task context.

/*
 * Setup the hardware ready for the scheduler to take control. This generally
 * sets up a tick interrupt and sets timers for the correct tick frequency.
 */
portBASE_TYPE xPortStartScheduler(void)
{
 rtos_tick_timer_install();

 /* this enables interrupts because the initialized stack frame contains
 the flag register status */
 portStartScheduler_asm(); /* returns, when portEndScheduler_asm is called */

 return pdFALSE;
}

The two stack pointer and the flag register registers to save have static space in
the port assembler file asm_func.s34.

 ; LOCAL VARIABLES --
 ; keep context prior to the scheduler started
 RSEG DATA16_N:NEARDATA:NOROOT(1)
 EVEN
preStartSchedulerUSP:
 DS16 1
 RSEG DATA16_N:NEARDATA:NOROOT(1)
 EVEN
preStartSchedulerFLAGS:
 DS16 1
 RSEG DATA16_N:NEARDATA:NOROOT(1)
 EVEN
preStartSchedulerISP:
 DS16 1

Following the code that saves the context and switches in the first task to run.

16 / 17 26/09/2008 / FreeRTOS_IAR_M16C62P_v1.1.doc

17 / 17 26/09/2008 / FreeRTOS_IAR_M16C62P_v1.1.doc

 ; OS START CODE, SAVE CONTEXT PRIOR OS UP, SWITCH IN FIRST TASK --------
 ; void portStartScheduler_asm(void)
 ; this code is used to activate the first task. It returns when
 ; void portEndScheduler_asm(void) is called
 RSEG CODE:CODE:REORDER:NOROOT(0)
portStartScheduler_asm:
 PUSHM R0,R1,R2,R3,A0,A1,SB,FB; Save to the active stack
 STC FLG, preStartSchedulerFLAGS;
 FCLR I; stop interrupts
 FSET U;
 STC SP, preStartSchedulerUSP;
 STC ISP, preStartSchedulerISP;
 MOV.B #0,intNesting
 restore_context;
 REIT;

The stop code is similar but in reverse order:
• Uninstall the tick timer.
• Do a save_context as explained in »Task Switching Primitives«.
• Restore ISP, USP and the FLG registers from prior the call

to portStartScheduler_asm
• Restore the CPU registers from the active stack.
• Return from the subroutine.

/*
 * Undo any hardware/ISR setup that was performed by xPortStartScheduler() so
 * the hardware is left in its original condition after the scheduler stops
 * executing. DO NOT CALL FROM INTERRUPT!
 */
void vPortEndScheduler(void)
{
 rtos_tick_timer_uninstall();
 portEndScheduler_asm();
}

Following the assembler code that switches out the task which called
vPortEndScheduler.

 ; OS STOP CODE, SAVE CONTEXT OF TASK, RESTORE CONTEXT PRIOR OS UP ------
 RSEG CODE:CODE:REORDER:NOROOT(0)
 ; DO NOT CALL FROM INTERRUPT
portEndScheduler_asm:
 save_context; this activates the ISP
 FCLR I; stop interrupts
 LDC preStartSchedulerISP, ISP;
 FSET U;
 LDC preStartSchedulerUSP, SP;
 LDC preStartSchedulerFLAGS, FLG; This activates the stack
 ; that was active when portStartScheduler_asm
 ; have been called
 POPM R0,R1,R2,R3,A0,A1,SB,FB; restore from active stack
 RTS;

	1 Introduction
	2 Task Stack Layout and Creation
	3 Task Switching Primitives
	4 Interrupt Nesting
	5 System Tick Timer
	6 User Interrupt Handler
	7 Starting/Stopping the OS

