655 lines
22 KiB
C
655 lines
22 KiB
C
#include "usb_drv.h"
|
|
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
|
|
#include "flatUSB_config.h"
|
|
#include "usb_driver_common.h"
|
|
|
|
#include FLATUSB_DESCRIPTOR_HEADER
|
|
|
|
#include "usb_common.h"
|
|
|
|
#include "ch32f20x_usb.h"
|
|
|
|
#ifndef SET_BIT
|
|
#define SET_BIT(r, b) (r) |= (b)
|
|
#endif
|
|
|
|
#ifndef GET_BIT
|
|
#define GET_BIT(r, b) (((r) & (b)) != 0)
|
|
#endif
|
|
|
|
#ifndef CLEAR_BIT
|
|
#define CLEAR_BIT(r, b) (r) &= ~(b)
|
|
#endif
|
|
|
|
#ifndef __weak
|
|
#define __weak __attribute__((weak))
|
|
#endif
|
|
|
|
// ------------------------
|
|
|
|
// combined buffer: TX1 | RX1 | TX2 | RX2 (TODO: ennek még utána kell nézni)
|
|
|
|
#define USB_EP_TX_BUF_SIZE (64) ///< Transmit buffer size
|
|
#define USB_EP_RX_BUF_SIZE (64) ///< Receive buffer size
|
|
#define USB_EP_COMBINED_BUF_SIZE ((USB_EP_TX_BUF_SIZE + USB_EP_RX_BUF_SIZE)) ///< Combined buffer size in a single direction
|
|
#define USB_EP_SUMMED_BUF_SIZE (USB_EP_COMBINED_BUF_SIZE * USB_NUM_OF_ENDPOINTS) ///< Summed size for each endpoint in each direction
|
|
|
|
static USBDRV_GlobalState gs; ///< Global USB state
|
|
static uint8_t buf[USB_EP_SUMMED_BUF_SIZE] DWORD_ALIGN; ///< Transmit/Receive buffer
|
|
static UsbDrv_IN_cb cbs[USB_NUM_OF_ENDPOINTS]; ///< Callbacks for IN completion
|
|
|
|
// FIXME: ez lehet, hogy pont fordítva van...
|
|
#define USB_EP_GET_EP0_BUFFER() (gs.buf)
|
|
#define USB_EP_GET_TX_BUFFER(ep) (gs.buf + ((ep) * USB_EP_COMBINED_BUF_SIZE) + USB_EP_RX_BUF_SIZE)
|
|
#define USB_EP_GET_RX_BUFFER(ep) (gs.buf + ((ep) * USB_EP_COMBINED_BUF_SIZE))
|
|
|
|
/** \cond false */
|
|
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
|
|
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
|
|
/** \endcond */
|
|
|
|
// ------------------------
|
|
|
|
void usbdrv_register_IN_complete_cb(uint8_t ep, UsbDrv_IN_cb cb) {
|
|
cbs[ep] = cb;
|
|
}
|
|
|
|
// ------------------------
|
|
|
|
static UsbDrv_DrvIntf drvIntf;
|
|
|
|
void usbdrv_init_intf() {
|
|
drvIntf.init = usbdrv_init;
|
|
drvIntf.reset = usbdrv_reset;
|
|
drvIntf.stall = usbdrv_stall_endpoint;
|
|
drvIntf.arm_IN = usbdrv_arm_IN_endpoint;
|
|
drvIntf.arm_OUT = usbdrv_arm_OUT_endpoint;
|
|
drvIntf.set_address = usbdrv_set_address;
|
|
drvIntf.set_config = usbdrv_fetch_endpoint_configuration;
|
|
drvIntf.autoarm = usbdrv_autoarm_OUT_endpoint;
|
|
drvIntf.en_ep_irq = usbdrv_enable_endpoint_interrupt;
|
|
drvIntf.reg_IN_cb = usbdrv_register_IN_complete_cb;
|
|
}
|
|
|
|
UsbDrv_DrvIntf *usbdrv_get_intf() {
|
|
return &drvIntf;
|
|
}
|
|
|
|
// ------------------------
|
|
|
|
// issue a reset
|
|
static void usbdrv_hw_reset() {
|
|
SET_BIT(USBG->BASE_CTRL, USBFS_UC_RESET_SIE); // assert reset
|
|
USB_DELAY(1); // insert some delay
|
|
CLEAR_BIT(USBG->BASE_CTRL, USBFS_UC_RESET_SIE); // release reset
|
|
return;
|
|
}
|
|
|
|
// initialize USB peripheral
|
|
void usbdrv_periph_init(bool reset) {
|
|
if (!reset) {
|
|
// enable USB clock
|
|
USB_CLOCK_ENABLE();
|
|
|
|
// trigger a reset (FIXME: biztos jó ez így?)
|
|
usbdrv_hw_reset();
|
|
}
|
|
|
|
// turn off the transciever
|
|
usbdrv_power_and_connect(false);
|
|
|
|
// select device mode with internal pullups
|
|
CLEAR_BIT(USBG->BASE_CTRL, USBFS_UC_HOST_MODE); // device mode
|
|
SET_BIT(USBG->BASE_CTRL, USBFS_UC_SYS_CTRL3); // pullup activation
|
|
|
|
// set Full-Speed operation (TODO: lehet, hogy a low-speed-et is érdemes megírni)
|
|
CLEAR_BIT(USBG->BASE_CTRL, USBFS_UC_LOW_SPEED); // (global)
|
|
CLEAR_BIT(USBG->UDEV_CTRL, USBFS_UD_LOW_SPEED); // (device)
|
|
|
|
// set automatic NAK reporting
|
|
SET_BIT(USBG->BASE_CTRL, USBFS_UC_INT_BUSY);
|
|
|
|
// clear all interrupts
|
|
USBG->INT_FG = 0xFF;
|
|
|
|
// allow specific interrupts
|
|
uint32_t intmask =
|
|
USBFS_UIE_BUS_RST | // Bus reset
|
|
USBFS_UIE_TRANSFER | // Transfer complete interrupt
|
|
USBFS_UIE_SUSPEND | // Bues suspend or wakeup interrupt
|
|
USBFS_UIE_FIFO_OV; // FIFO overflow interrupt
|
|
USBG->INT_EN = intmask;
|
|
|
|
if (!reset) {
|
|
// flush Tx and Rx FIFOs
|
|
usbdrv_clear_all_fifos();
|
|
}
|
|
}
|
|
|
|
// initialize global state
|
|
void usbdrv_init_global_state() {
|
|
// clear state
|
|
memset(&gs, 0, sizeof(USBDRV_GlobalState));
|
|
|
|
// clear IN complete callbacks
|
|
memset(&cbs, 0, sizeof(UsbDrv_IN_cb) * USB_NUM_OF_ENDPOINTS);
|
|
|
|
// initialize receive buffer
|
|
gs.buf = buf;
|
|
}
|
|
|
|
/**
|
|
* Hook for initializing modules after the low-level driver has been initialized
|
|
* but has not been connected to the bus yet.
|
|
*/
|
|
__weak void usbdrv_init_hook() {
|
|
return;
|
|
}
|
|
|
|
// initialize USB subsystem
|
|
void usbdrv_init() {
|
|
USB_IRQ_DISABLE(USB_IRQ_N); // disable USB interrupts
|
|
|
|
usbdrv_init_global_state();
|
|
usbdrv_init_intf();
|
|
usbdrv_gpio_init();
|
|
usbdrv_periph_init(false);
|
|
usbdrv_initial_ep0_setup();
|
|
usbdrv_init_hook(); // <---
|
|
usbdrv_power_and_connect(true);
|
|
|
|
USB_IRQ_SET_PRIORITY(USB_IRQ_N, USB_IRQ_PRIORITY);
|
|
USB_IRQ_ENABLE(USB_IRQ_N);
|
|
}
|
|
|
|
void usbdrv_reset() {
|
|
USB_IRQ_DISABLE(USB_IRQ_N); // disable USB interrupts
|
|
|
|
usbdrv_hw_reset(); // hardware reset
|
|
usbdrv_init_global_state();
|
|
usbdrv_periph_init(true);
|
|
usbdrv_initial_ep0_setup();
|
|
usbdrv_power_and_connect(true);
|
|
|
|
USB_IRQ_SET_PRIORITY(USB_IRQ_N, USB_IRQ_PRIORITY);
|
|
USB_IRQ_ENABLE(USB_IRQ_N);
|
|
}
|
|
|
|
// connect to or disconnect from the bus
|
|
void usbdrv_power_and_connect(bool en) {
|
|
if (en) { // ON
|
|
SET_BIT(USBG->BASE_CTRL, USBFS_UC_DEV_PU_EN); // enable USB device and internal pull-ups (global)
|
|
SET_BIT(USBG->UDEV_CTRL, USBFS_UD_PORT_EN); // enable USB device physical port (device)
|
|
SET_BIT(USBG->BASE_CTRL, USBFS_UC_DMA_EN); // enable DMA operation and interrupts
|
|
} else { // OFF
|
|
CLEAR_BIT(USBG->BASE_CTRL, USBFS_UC_DEV_PU_EN); // disable...
|
|
CLEAR_BIT(USBG->UDEV_CTRL, USBFS_UD_PORT_EN); // ...
|
|
CLEAR_BIT(USBG->BASE_CTRL, USBFS_UC_DMA_EN); // ...
|
|
}
|
|
}
|
|
|
|
// -------------------
|
|
|
|
// clear all FIFOs
|
|
void usbdrv_clear_all_fifos() {
|
|
SET_BIT(USBG->BASE_CTRL, USBFS_UC_CLR_ALL);
|
|
USB_DELAY(1);
|
|
CLEAR_BIT(USBG->BASE_CTRL, USBFS_UC_CLR_ALL);
|
|
}
|
|
|
|
// ---------------------
|
|
|
|
typedef struct {
|
|
volatile uint8_t *UEP_MOD; ///< EP mode control register
|
|
uint8_t RX_EN; ///< EP receive enable flag
|
|
uint8_t TX_EN; ///< EP transmit enable flag
|
|
uint8_t BUF_MOD; ///< EP buffer mode flag
|
|
volatile uint32_t *BUF_START_ADDR; ///< EP buffer start address
|
|
volatile uint16_t *TRANSMIT_LENGTH; ///< EP transmit length register
|
|
volatile uint8_t *TX_CTRL; ///< EP transmit control register
|
|
volatile uint8_t *RX_CTRL; ///< EP receive control register
|
|
} USB_EP_Ctrl;
|
|
|
|
// clang-format off
|
|
static const USB_EP_Ctrl USB_EPCtrl[USB_MAX_NUM_OF_ENDPOINTS] = {
|
|
{NULL, 0, 0, 0, &(USBG->UEP0_DMA), &(USBG->UEP0_TX_LEN), &(USBG->UEP0_TX_CTRL), &(USBG->UEP0_RX_CTRL)}, // EP0
|
|
{&(USBG->UEP4_1_MOD), USBFS_UEP1_RX_EN, USBFS_UEP1_TX_EN, USBFS_UEP1_BUF_MOD, &(USBG->UEP1_DMA), &(USBG->UEP1_TX_LEN), &(USBG->UEP1_TX_CTRL), &(USBG->UEP1_RX_CTRL) }, // EP1
|
|
{&(USBG->UEP2_3_MOD), USBFS_UEP2_RX_EN, USBFS_UEP2_TX_EN, USBFS_UEP2_BUF_MOD, &(USBG->UEP2_DMA), &(USBG->UEP2_TX_LEN), &(USBG->UEP2_TX_CTRL), &(USBG->UEP2_RX_CTRL) }, // EP2
|
|
{&(USBG->UEP2_3_MOD), USBFS_UEP3_RX_EN, USBFS_UEP3_TX_EN, USBFS_UEP3_BUF_MOD, &(USBG->UEP3_DMA), &(USBG->UEP3_TX_LEN), &(USBG->UEP3_TX_CTRL), &(USBG->UEP3_RX_CTRL) }, // EP3
|
|
{&(USBG->UEP4_1_MOD), USBFS_UEP4_RX_EN, USBFS_UEP4_TX_EN, USBFS_UEP4_BUF_MOD, &(USBG->UEP4_DMA), &(USBG->UEP4_TX_LEN), &(USBG->UEP4_TX_CTRL), &(USBG->UEP4_RX_CTRL) }, // EP4
|
|
{&(USBG->UEP5_6_MOD), USBFS_UEP5_RX_EN, USBFS_UEP5_TX_EN, USBFS_UEP5_BUF_MOD, &(USBG->UEP5_DMA), &(USBG->UEP5_TX_LEN), &(USBG->UEP5_TX_CTRL), &(USBG->UEP5_RX_CTRL) }, // EP5
|
|
{&(USBG->UEP5_6_MOD), USBFS_UEP6_RX_EN, USBFS_UEP6_TX_EN, USBFS_UEP6_BUF_MOD, &(USBG->UEP6_DMA), &(USBG->UEP6_TX_LEN), &(USBG->UEP6_TX_CTRL), &(USBG->UEP6_RX_CTRL) }, // EP6
|
|
{&(USBG->UEP7_MOD), USBFS_UEP7_RX_EN, USBFS_UEP7_TX_EN, USBFS_UEP7_BUF_MOD, &(USBG->UEP7_DMA), &(USBG->UEP7_TX_LEN), &(USBG->UEP7_TX_CTRL), &(USBG->UEP7_RX_CTRL) }, // EP7
|
|
};
|
|
|
|
// clang-format on
|
|
|
|
// configure USB endpoint
|
|
void usbdrv_configure_endpoint(uint8_t ep, uint8_t dir, const USBDRV_EpConfig *cfg) {
|
|
const USB_EP_Ctrl *epc = USB_EPCtrl + ep; // get Endpoint control
|
|
|
|
if (dir == USB_OUT) { // ---- OUT ----
|
|
|
|
if (ep != 0) { // SPECIAL treatment to EP0, that one cannot be turned on or off
|
|
CLEAR_BIT(*epc->UEP_MOD, epc->BUF_MOD); // clear BUFMOD bit
|
|
SET_BIT(*epc->UEP_MOD, epc->RX_EN); // set RX enable bit
|
|
}
|
|
|
|
SET_BIT(*epc->RX_CTRL, USBFS_UEP_R_AUTO_TOG); // turn on automatic sync bit toggling
|
|
|
|
// ---- common for all endpoints ----
|
|
|
|
// NAK processing
|
|
CLEAR_BIT(*epc->RX_CTRL, USBFS_UEP_R_RES_MASK);
|
|
if (cfg->responding_NAK) {
|
|
SET_BIT(*epc->RX_CTRL, USBFS_UEP_R_RES_NAK); // send NAK
|
|
} else {
|
|
usbdrv_arm_OUT_endpoint(ep, cfg->max_packet_size);
|
|
}
|
|
} else { // ---- IN ----
|
|
|
|
if (ep != 0) { // SPECIAL treatment to EP0, that one cannot be turned on or off
|
|
CLEAR_BIT(*epc->UEP_MOD, epc->BUF_MOD); // clear BUFMOD bit
|
|
SET_BIT(*epc->UEP_MOD, epc->TX_EN); // set TX enable bit
|
|
SET_BIT(*epc->TX_CTRL, USBFS_UEP_T_AUTO_TOG); // turn on automatic sync bit toggling
|
|
}
|
|
|
|
// ---- common for all endpoints ----
|
|
|
|
// NAK processing
|
|
CLEAR_BIT(*epc->TX_CTRL, USBFS_UEP_T_RES_MASK);
|
|
// if (cfg->responding_NAK) {
|
|
SET_BIT(*epc->TX_CTRL, USBFS_UEP_T_RES_NAK); // send NAK by default
|
|
//}
|
|
}
|
|
}
|
|
|
|
// deconfigure USB endpoint
|
|
void usbdrv_deconfigure_endpoint(uint8_t ep, uint8_t dir) {
|
|
if (ep == 0) { // EP0 cannot be deconfigured
|
|
return;
|
|
}
|
|
|
|
const USB_EP_Ctrl *epc = USB_EPCtrl + ep; // get Endpoint control
|
|
|
|
if (dir == USB_OUT) { // ---- OUT ----
|
|
CLEAR_BIT(*epc->UEP_MOD, epc->BUF_MOD); // clear BUFMOD bit
|
|
CLEAR_BIT(*epc->UEP_MOD, epc->RX_EN); // clear RX enable bit
|
|
} else { // ---- IN ----
|
|
CLEAR_BIT(*epc->UEP_MOD, epc->BUF_MOD); // clear BUFMOD bit
|
|
CLEAR_BIT(*epc->UEP_MOD, epc->TX_EN); // clear TX enable bit
|
|
}
|
|
}
|
|
|
|
// ---------------------
|
|
|
|
// stall endpoint
|
|
void usbdrv_stall_endpoint(uint8_t ep, uint8_t dir, bool stall) {
|
|
const USB_EP_Ctrl *epc = USB_EPCtrl + ep;
|
|
|
|
if (dir == USB_IN) {
|
|
CLEAR_BIT(*epc->RX_CTRL, USBFS_UEP_R_RES_MASK);
|
|
if (stall) {
|
|
SET_BIT(*epc->RX_CTRL, USBFS_UEP_R_RES_STALL); // stall endpoint
|
|
}
|
|
} else {
|
|
CLEAR_BIT(*epc->RX_CTRL, USBFS_UEP_T_RES_MASK);
|
|
if (stall) {
|
|
SET_BIT(*epc->TX_CTRL, USBFS_UEP_T_RES_STALL); // stall endpoint
|
|
}
|
|
}
|
|
}
|
|
|
|
// ----------------
|
|
|
|
// write data to specific endpoint FIFO
|
|
uint32_t usbdrv_arm_IN_endpoint(uint8_t ep, const uint8_t *data, uint16_t len) {
|
|
// proceed only if it was not armed before
|
|
if (gs.ep_IN[ep].txp) {
|
|
return 0;
|
|
}
|
|
|
|
// get Endpoint control data
|
|
const USB_EP_Ctrl *epc = USB_EPCtrl + ep;
|
|
|
|
// constrain copy length
|
|
uint16_t txLen = MIN(len, USB_EP_TX_BUF_SIZE);
|
|
|
|
// copy data to the output buffer
|
|
if (txLen > 0) {
|
|
uint8_t *txBuf = (ep == 0) ? USB_EP_GET_EP0_BUFFER() : USB_EP_GET_TX_BUFFER(ep);
|
|
memcpy(txBuf, data, txLen);
|
|
}
|
|
|
|
// set transmission length
|
|
*epc->TRANSMIT_LENGTH = txLen;
|
|
|
|
// append ZLP only, if packet size is MAX_PCKT_SIZE (this way to ZLP is injected in a longer packet whose first part is limited to 64 bytes)
|
|
gs.ep_IN[ep].zlp_next = (len == USB_MAX_FS_PCKT_SIZE_NON_ISOCHRONOUS);
|
|
|
|
// non-EP0 must begin responding with DATA0
|
|
// if (ep != 0) {
|
|
// CLEAR_BIT(*epc->TX_CTRL, USBFS_UEP_T_TOG);
|
|
// }
|
|
|
|
// signal that transmission is in progress
|
|
gs.ep_IN[ep].txp = true;
|
|
|
|
// enable transmission
|
|
CLEAR_BIT(*epc->TX_CTRL, USBFS_UEP_T_RES_MASK);
|
|
|
|
// return with written size
|
|
return txLen;
|
|
}
|
|
|
|
// arm OUT endpoint
|
|
uint32_t usbdrv_arm_OUT_endpoint(uint8_t ep, uint16_t size) {
|
|
// proceed only if it was not armed before
|
|
if (gs.ep_OUT[ep].txp) {
|
|
return 0;
|
|
}
|
|
|
|
// cap size at max packet size defined for this endpoint
|
|
size = MIN(gs.ep_OUT[ep].max_packet_size, size);
|
|
|
|
// get Endpoint control data
|
|
const USB_EP_Ctrl *epc = USB_EPCtrl + ep;
|
|
|
|
// copy data to the output buffer
|
|
// uint32_t *rxBuf = (uint32_t *)(((uint32_t)(*epc->BUF_START_ADDR)) + USB_EP_TX_BUF_SIZE);
|
|
|
|
// enable transmission
|
|
CLEAR_BIT(*epc->RX_CTRL, USBFS_UEP_R_RES_MASK);
|
|
|
|
// signal that transmission is in progress
|
|
gs.ep_OUT[ep].txp = true;
|
|
|
|
// return with armed size
|
|
return size;
|
|
}
|
|
|
|
void usbdrv_autoarm_OUT_endpoint(uint8_t ep) {
|
|
gs.ep_OUT[ep].autoarm = true;
|
|
}
|
|
|
|
// ----------------
|
|
|
|
void usbdrv_enable_endpoint_interrupt(uint8_t ep, uint8_t dir, bool en) {
|
|
return; // FIXME
|
|
}
|
|
|
|
// preload usb endpoint config
|
|
void usbdrv_preload_endpoint_config(uint8_t ep, uint8_t dir, const USBDRV_EpConfig *cfg) {
|
|
USBMSG("PRELOAD: %u %s\n", ep, dir ? "IN" : "OUT");
|
|
if (dir == USB_OUT) {
|
|
gs.ep_OUT[ep] = *cfg;
|
|
gs.ep_OUT[ep].is_configured = true;
|
|
} else {
|
|
gs.ep_IN[ep] = *cfg;
|
|
gs.ep_IN[ep].is_configured = true;
|
|
}
|
|
}
|
|
|
|
// clear endpoint config
|
|
void usbdrv_clear_endpoint_config() {
|
|
memset(&gs.ep_OUT, 0, USB_NUM_OF_ENDPOINTS * sizeof(USBDRV_EpConfig));
|
|
memset(&gs.ep_IN, 0, USB_NUM_OF_ENDPOINTS * sizeof(USBDRV_EpConfig));
|
|
}
|
|
|
|
// apply preloaded endpoint configuration
|
|
void usbdrv_apply_endpoint_config() {
|
|
for (uint8_t i = 0; i < USB_NUM_OF_ENDPOINTS; i++) {
|
|
// OUT EPs
|
|
if (gs.ep_OUT[i].is_configured) {
|
|
usbdrv_configure_endpoint(i, USB_OUT, gs.ep_OUT + i);
|
|
}
|
|
|
|
// IN EPs
|
|
if (gs.ep_IN[i].is_configured) {
|
|
usbdrv_configure_endpoint(i, USB_IN, gs.ep_IN + i);
|
|
}
|
|
}
|
|
}
|
|
|
|
// fetch endpoint configuration from descriptor dump
|
|
void usbdrv_fetch_endpoint_configuration(uint8_t config_index) {
|
|
const uint8_t *fullConfDesc = (const uint8_t *)confDescs[config_index]; // point an array to the beginning of the full configuration
|
|
const USB_ConfigurationDesc *confDesc = (const USB_ConfigurationDesc *)confDescs[config_index]; // fetch the leading configuration descriptor
|
|
|
|
// look up endpoint descriptors
|
|
const uint8_t *iter = fullConfDesc;
|
|
while (iter < (fullConfDesc + confDesc->wTotalLength)) {
|
|
if (iter[1] == UD_Endpoint) { // Endpoint descriptor found
|
|
USB_EndpointDesc epDesc;
|
|
memcpy(&epDesc, iter, iter[0]); // fetch EP descriptor by copy, since desciptor start address is NOT aligned
|
|
USBDRV_EpConfig cfg; // fill-in configuration
|
|
cfg.max_packet_size = epDesc.wMaxPacketSize;
|
|
cfg.responding_NAK = false;
|
|
cfg.type = epDesc.bmAttributes & 0b11;
|
|
cfg.service_interval = epDesc.bInterval;
|
|
|
|
// fetch endpoint address
|
|
uint8_t dir = (epDesc.bEndpointAddress >> 7);
|
|
uint8_t n = epDesc.bEndpointAddress & 0x7F;
|
|
|
|
// apply configuration
|
|
usbdrv_preload_endpoint_config(n, dir, &cfg);
|
|
}
|
|
|
|
// advance iterator using the bLength field (first byte in a descriptor)
|
|
iter += iter[0];
|
|
}
|
|
|
|
usbdrv_allocate_buffers();
|
|
|
|
usbdrv_apply_endpoint_config();
|
|
}
|
|
|
|
// #define USBDRV_ADDR_TABLE_STR_LEN (255)
|
|
// static char usbdrv_addr_table[USBDRV_ADDR_TABLE_STR_LEN + 1];
|
|
|
|
// build buffer structure, allocate buffers (compute addresses)
|
|
void usbdrv_allocate_buffers() {
|
|
for (uint8_t i = 0; i < USB_NUM_OF_ENDPOINTS; i++) {
|
|
*USB_EPCtrl[i].BUF_START_ADDR = (uint32_t)USB_EP_GET_RX_BUFFER(i);
|
|
|
|
USBDRV_EpConfig *cfg = &gs.ep_IN[i];
|
|
if (cfg->is_configured) {
|
|
cfg->buffer_address = (uint32_t)(*USB_EPCtrl[i].BUF_START_ADDR); // store DMA start address
|
|
cfg->zlp_next = false;
|
|
cfg->txp = false; // no transfer is in progress
|
|
}
|
|
}
|
|
}
|
|
|
|
// ---------------------
|
|
|
|
// create an initial setup for EP0 in both directions
|
|
void usbdrv_initial_ep0_setup() {
|
|
// setup EP0 OUT and IN
|
|
USBDRV_EpConfig ep_cfg;
|
|
ep_cfg.max_packet_size = 64;
|
|
ep_cfg.responding_NAK = false;
|
|
usbdrv_preload_endpoint_config(0, USB_OUT, &ep_cfg);
|
|
usbdrv_preload_endpoint_config(0, USB_IN, &ep_cfg);
|
|
|
|
// build FIFO
|
|
usbdrv_allocate_buffers();
|
|
|
|
// configure endpoints
|
|
usbdrv_apply_endpoint_config();
|
|
}
|
|
|
|
// ---------------------
|
|
|
|
void usbdrv_set_address(uint8_t addr) {
|
|
gs.address = addr;
|
|
gs.address_pending = true; // cannot set address immediately, have to wait for next IN transaction
|
|
}
|
|
|
|
// ---------------------
|
|
|
|
/**
|
|
* Function prototype for processing SETUP packets. This function is expected to be
|
|
* overridden by the application.
|
|
*
|
|
* @param data pointer to the SETUP packet
|
|
* @param size size of the packet
|
|
* @param stage stage of the SETUP transaction
|
|
*/
|
|
__weak void usbcore_process_setup_pckt(const uint8_t *data, uint16_t size, uint8_t stage) {
|
|
// always pass ALIGNED data!
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* Function prototype for processing non-SETUP packets. This function is expected to be
|
|
* overridden by the application.
|
|
*
|
|
* @param cbcpd pointer to callback compound
|
|
*/
|
|
__weak void usbcore_process_nonsetup_event(UsbDrv_CallbackCompound *cbcpd) {
|
|
return;
|
|
}
|
|
|
|
#define USB_INT_STATUS_GET_EP(s) ((s) & USBFS_UIS_ENDP_MASK) ///< Get EP number from interrupt status
|
|
#define USB_INT_STATUS_GET_TOKEN(s) ((s) & USBFS_UIS_TOKEN_MASK) ///< Get token of the interrupt (no shifting!)
|
|
#define USB_INT_STATUS_IS_NAK(s) (((s) & USBFS_UIS_IS_NAK) != 0) ///< Was it a NAK transmission?
|
|
|
|
// TODO: egy input buffer kellene ide, mert különben egy lassú feldolgozás felborít mindent!
|
|
|
|
// process USB event
|
|
void usbdrv_process_event(uint8_t evt_code, USBDRV_EventData *evt_data) {
|
|
if (evt_code == USB_EVT_USB_RESET) { // reset takes precedence over anything else TODO
|
|
usbdrv_reset();
|
|
|
|
// invoke Reset Done notification
|
|
if (drvIntf.rst_notify != NULL) {
|
|
drvIntf.rst_notify();
|
|
}
|
|
|
|
USBMSG("RESET\n");
|
|
return;
|
|
} else if (evt_code == USB_EVT_TRANSFER_COMPLETION) { // transfer complete
|
|
uint8_t status = USBG->INT_ST; // read interrupt status register
|
|
uint8_t token = USB_INT_STATUS_GET_TOKEN(status);
|
|
uint8_t ep = USB_INT_STATUS_GET_EP(status);
|
|
bool nak = USB_INT_STATUS_IS_NAK(status);
|
|
uint16_t len = USBG->RX_LEN;
|
|
|
|
UsbDrv_CallbackCompound cbcpd;
|
|
cbcpd.ep = ep;
|
|
|
|
switch (token) {
|
|
case USBFS_UIS_TOKEN_OUT: {
|
|
if (ep == 0) {
|
|
uint8_t *rxBuf = USB_EP_GET_EP0_BUFFER();
|
|
usbcore_process_setup_pckt(rxBuf, len, UST_DATA);
|
|
} else {
|
|
cbcpd.dir = USB_OUT;
|
|
cbcpd.code = USB_CBC_OUT;
|
|
cbcpd.data = USB_EP_GET_RX_BUFFER(ep);
|
|
cbcpd.size = len;
|
|
usbcore_process_nonsetup_event(&cbcpd);
|
|
}
|
|
|
|
if (ep != 0) {
|
|
SET_BIT(*USB_EPCtrl[ep].RX_CTRL, USBFS_UEP_R_RES_NAK); // send NAK
|
|
gs.ep_OUT[ep].txp = false; // transfer concluded
|
|
}
|
|
|
|
if ((ep == 0) || (gs.ep_OUT[ep].autoarm)) { // EP0 must always be armed
|
|
usbdrv_arm_OUT_endpoint(ep, gs.ep_OUT[ep].max_packet_size); // arm endpoint
|
|
gs.ep_OUT[ep].autoarm = false; // clear autoarm flag
|
|
}
|
|
|
|
} break;
|
|
case USBFS_UIS_TOKEN_IN: {
|
|
if (gs.ep_IN[ep].zlp_next) {
|
|
usbdrv_arm_IN_endpoint(ep, NULL, 0); // send ZLP
|
|
} else { // no ZLP
|
|
cbcpd.dir = USB_IN;
|
|
cbcpd.code = USB_CBC_IN_DONE;
|
|
cbcpd.data = NULL;
|
|
cbcpd.size = 0;
|
|
|
|
SET_BIT(*USB_EPCtrl[ep].TX_CTRL, USBFS_UEP_T_RES_NAK); // send NAK
|
|
*USB_EPCtrl[ep].TRANSMIT_LENGTH = 0; // zero transmit length
|
|
|
|
// usbcore_process_nonsetup_event(&cbcpd);
|
|
|
|
// change address
|
|
if (gs.address_pending) {
|
|
USBG->DEV_ADDR = gs.address;
|
|
gs.address_pending = false;
|
|
}
|
|
|
|
gs.ep_IN[ep].txp = false; // transfer concluded
|
|
|
|
// toggle EP0 synchronization bit
|
|
if (ep == 0) {
|
|
bool tog = !GET_BIT(*USB_EPCtrl[0].TX_CTRL, USBFS_UEP_T_TOG);
|
|
if (tog) { // DATA1 is the next transfer
|
|
SET_BIT(*USB_EPCtrl[0].TX_CTRL, USBFS_UEP_T_TOG);
|
|
} else { // DATA0 is the next transfer
|
|
CLEAR_BIT(*USB_EPCtrl[0].TX_CTRL, USBFS_UEP_T_TOG);
|
|
}
|
|
}
|
|
|
|
if (nak) {
|
|
__NOP();
|
|
}
|
|
|
|
// invoke callback if registered
|
|
if (cbs[ep] != NULL) {
|
|
UsbDrv_IN_cb cb = cbs[ep]; // fetch function pointer
|
|
cbs[ep] = NULL; // clear callback
|
|
cb(ep); // invoke the callback
|
|
}
|
|
}
|
|
} break;
|
|
case USBFS_UIS_TOKEN_SETUP: {
|
|
SET_BIT(*USB_EPCtrl[0].TX_CTRL, USBFS_UEP_T_TOG); // secure starting with DATA1 if an IN follows
|
|
uint8_t *rxBuf = USB_EP_GET_EP0_BUFFER(); // the receive buffer
|
|
usbcore_process_setup_pckt(rxBuf, 8, UST_SETUP); // process the setup packet
|
|
} break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// ---------------------
|
|
|
|
#define PROCESS_EVENT(evt, data) usbdrv_process_event((evt), (data))
|
|
|
|
void USB_IRQ_HANDLER() {
|
|
|
|
uint32_t ints = USBG->INT_FG;
|
|
|
|
// USB reset
|
|
if (ints & USBFS_UIF_BUS_RST) {
|
|
SET_BIT(USBG->INT_FG, USBFS_UIF_BUS_RST); // clear interrupt
|
|
// PROCESS_EVENT(USB_EVT_USB_RESET, NULL); // process event
|
|
}
|
|
|
|
// USB Suspend
|
|
if (ints & USBFS_UIF_SUSPEND) {
|
|
SET_BIT(USBG->INT_FG, USBFS_UIF_SUSPEND); // clear interrupt
|
|
USBMSG("SUSPEND\n");
|
|
}
|
|
|
|
// FIFO overflow
|
|
if (ints & USBFS_UIF_FIFO_OV) {
|
|
SET_BIT(USBG->INT_FG, USBFS_UIF_FIFO_OV); // clear interrupt
|
|
}
|
|
|
|
// Transfer complete
|
|
if (ints & USBFS_UIF_TRANSFER) {
|
|
PROCESS_EVENT(USB_EVT_TRANSFER_COMPLETION, NULL); // process event
|
|
SET_BIT(USBG->INT_FG, USBFS_UIF_TRANSFER); // clear interrupt
|
|
}
|
|
|
|
return;
|
|
} |