flatUSB/usb_driver.c
Epagris dcf2c2b808 - CMake target on generating descriptors from JSON
added
- basic flatUSB_config.h concept added
- example JSONs added
- CDC request replies fixed
2024-11-14 13:19:09 +01:00

1114 lines
40 KiB
C

#include "usb_driver.h"
#include <memory.h>
#include "usb_common_defs.h"
#include "usb_common.h"
#include "usb_device_types.h"
#include FLATUSB_DESCRIPTOR_HEADER
#include "embfmt/embformat.h"
#define SNPRINTF(str, n, fmt, ...) embfmt(str, n, fmt, __VA_ARGS__)
// ---------------
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
#ifdef USBDBGMSG
#include "../cli/stdio_uart.h"
#define USBMSG(...) MSG(__VA_ARGS__)
#else
#define USBMSG(...)
#endif
// ---------------
static USBDRV_GlobalState gs; // global USB state
#ifndef USB_HIGH_SPEED
#define USB_RX_BUF_SIZE (USB_MAX_FS_PCKT_SIZE_NON_ISOCHRONOUS)
#else
#define USB_RX_BUF_SIZE (USB_MAX_HS_PCKT_SIZE_NON_ISOCHRONOUS)
#endif
static uint8_t rx_buf[USB_RX_BUF_SIZE] DWORD_ALIGN; // receive buffer
#define USB_EVENT_QUEUE_LENGTH (16)
// static uint8_t event_queue_mem[Q_REQ_MEM_SIZE_T(USB_EVENT_QUEUE_LENGTH, USBDRV_EventCompound)] DWORD_ALIGN; // backing memory for the event queue
#ifdef USBDBGMSG
static const char *FIFO_STATUS_STR[6] = {
"GLOBAL OUT NAK",
"OUT DATA RECV",
"OUT TRANSFER CPLT",
"OUT SETUP CPLT",
"",
"OUT SETUP RECV"};
#endif
// ---------------
#if defined(USB_STM32H7)
#ifndef STM32H723xx
#define USB_GPIO_AF (GPIO_AF10_OTG2_FS)
#else
// #define USB_GPIO_AF (GPIO_AF10_OTG1_HS)
#endif
#elif defined(USB_STM32F4)
#ifdef USB_HIGH_SPEED
#define USB_GPIO_AF (GPIO_AF10_OTG_HS)
#else
#define USB_GPIO_AF (GPIO_AF10_OTG_FS)
#endif
#endif
// USB pin low level, early peripheral initialization
// PA12: D+, PA11: D-
void usbdrv_gpio_init() {
// turn GPIO-s into AF mode
__HAL_RCC_GPIOA_CLK_ENABLE(); // turn ON GPIOA clocks
#ifdef USB_HIGH_SPEED
__HAL_RCC_GPIOB_CLK_ENABLE();
__HAL_RCC_GPIOC_CLK_ENABLE();
#endif
#ifdef USB_GPIO_AF
GPIO_InitTypeDef gpio_init;
gpio_init.Mode = GPIO_MODE_AF_PP;
gpio_init.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
gpio_init.Pull = GPIO_NOPULL;
gpio_init.Alternate = USB_GPIO_AF;
#ifdef USB_HIGH_SPEED
gpio_init.Pin = GPIO_PIN_3 | GPIO_PIN_5; // D0, CK
HAL_GPIO_Init(GPIOA, &gpio_init);
// D1, D2, D7, D3, D4, D5, D6
gpio_init.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_5 | GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_13;
HAL_GPIO_Init(GPIOB, &gpio_init);
// STP, DIR, NXT
gpio_init.Pin = GPIO_PIN_0 | GPIO_PIN_2 | GPIO_PIN_3;
HAL_GPIO_Init(GPIOC, &gpio_init);
#else
/* Pin initializations cannot be OR-ed together! */
gpio_init.Pin = GPIO_PIN_11;
HAL_GPIO_Init(GPIOA, &gpio_init); // USB D-
gpio_init.Pin = GPIO_PIN_12;
HAL_GPIO_Init(GPIOA, &gpio_init); // USB D+
// HAL_GPIO_WritePin(GPIOA, GPIO_PIN_11, GPIO_PIN_SET);
// gpio_init.Pin = GPIO_PIN_11;
// gpio_init.Pull = GPIO_NOPULL;
// HAL_GPIO_Init(GPIOA, &gpio_init); // USB D-
// gpio_init.Mode = GPIO_MODE_INPUT;
// gpio_init.Pin = GPIO_PIN_9;
// gpio_init.Speed = GPIO_SPEED_FREQ_HIGH;
// gpio_init.Pull = GPIO_NOPULL;
// gpio_init.Alternate = 0;
// HAL_GPIO_Init(GPIOA, &gpio_init); // USB VBUSSENSE
#endif
#endif
}
// ---------------
#ifdef USB_HIGH_SPEED
#define USB_IRQn OTG_HS_IRQn
#else
#ifndef STM32H723xx
#define USB_IRQn OTG_FS_IRQn
#else
#define USB_IRQn OTG_HS_IRQn
#endif
#endif
// initialize USB subsystem
void usbdrv_init() {
HAL_NVIC_DisableIRQ(USB_IRQn);
usbdrv_init_global_state();
usbdrv_gpio_init();
usbdrv_periph_init();
usbdrv_initial_ep0_setup();
usbdrv_power_and_connect(true);
HAL_NVIC_SetPriority(USB_IRQn, 8, 0);
HAL_NVIC_EnableIRQ(USB_IRQn);
}
void usbdrv_reset() {
usbdrv_init();
}
// ---------------
#if USB_EVENT_PROCESSING_IN_OS_THREAD
static void usbdrv_thread(void *param);
#endif
// initialize global state
void usbdrv_init_global_state() {
// clear state
memset(&gs, 0, sizeof(USBDRV_GlobalState));
// initialize receive buffer
gs.rx_buf = rx_buf;
gs.rx_buf_level = 0;
#if USB_EVENT_PROCESSING_IN_OS_THREAD
// initialize event queue
gs.event_queue = osMessageQueueNew(16, sizeof(USBDRV_EventCompound), NULL);
// initialize event processing thread
osThreadAttr_t attr;
bzero(&attr, sizeof(osThreadAttr_t));
attr.stack_size = 2048;
attr.name = "usb";
attr.priority = osPriorityNormal;
gs.th = osThreadNew(usbdrv_thread, NULL, &attr);
#endif
}
// ---------------
#ifdef USB_HIGH_SPEED
__weak void usbdrv_ulpi_init() {
return;
}
#endif
#if defined(USB_STM32H7) /*|| defined(USB_HIGH_SPEED)*/
#define TOCAL_VALUE (0x00)
#define TRDT_VALUE (0x05)
#elif defined(USB_STM32F4)
#if !defined(USB_HIGH_SPEED)
#define TOCAL_VALUE (0x07)
#define TRDT_VALUE (0x06)
#else
#define TOCAL_VALUE (0x07)
#define TRDT_VALUE (0x09)
#endif
#endif
// ---------------
// initialize USB peripheral
void usbdrv_periph_init() {
#if defined(USB_STM32H7)
// THIS SHOULD NOT BE TOUCHED!
HAL_PWREx_EnableUSBVoltageDetector();
WAIT_FOR_nBIT_DELAY(PWR->CR3, PWR_CR3_USB33RDY, 1);
#if defined(STM32H723xx) // only a single USB HS peripheral is present on STM32H723 devices
__HAL_RCC_USB1_OTG_HS_CLK_ENABLE();
#else
__HAL_RCC_USB2_OTG_FS_CLK_ENABLE();
#endif
#endif
#ifdef USB_STM32F4
#ifdef USB_HIGH_SPEED
__HAL_RCC_USB_OTG_HS_CLK_ENABLE(); // enable HS USB peripheral
__HAL_RCC_USB_OTG_HS_ULPI_CLK_ENABLE(); // also enable ULPI module clock
#else
__HAL_RCC_USB_OTG_FS_CLK_ENABLE(); // enable FS USB peripheral
#endif
#endif
// HAL_Delay(1000);
//__HAL_RCC_USB_OTG_FS_ULPI_CLK_ENABLE();
//__HAL_RCC_USB_OTG_FS_FORCE_RESET();
//__HAL_RCC_USB_OTG_FS_RELEASE_RESET();
#if defined(USB_STM32H7)
SET_BIT(USBG->GUSBCFG, USB_OTG_GUSBCFG_PHYSEL); // select the internal FS PHY
WAIT_FOR_nBIT_DELAY(USBG->GRSTCTL, USB_OTG_GRSTCTL_AHBIDL, 1);
SET_BIT(USBG->GRSTCTL, USB_OTG_GRSTCTL_CSRST); // reset the USB core
HAL_Delay(1);
WAIT_FOR_BIT_DELAY(USBG->GRSTCTL, USB_OTG_GRSTCTL_CSRST, 1);
#else
#if defined(USB_HIGH_SPEED)
CLEAR_BIT(USBG->GUSBCFG, USB_OTG_GUSBCFG_PHYSEL); // select the external HS PHY
CLEAR_BIT(USBG->GUSBCFG, USB_OTG_GUSBCFG_TSDPS);
CLEAR_BIT(USBG->GUSBCFG, USB_OTG_GUSBCFG_ULPIFSLS);
CLEAR_BIT(USBG->GUSBCFG, USB_OTG_GUSBCFG_ULPIEVBUSD);
CLEAR_BIT(USBG->GUSBCFG, USB_OTG_GUSBCFG_ULPIEVBUSI);
// SET_BIT(USBG->GUSBCFG, USB_OTG_GUSBCFG_PHYSEL);
SET_BIT(USBG->GRSTCTL, USB_OTG_GRSTCTL_CSRST); // reset USB core
HAL_Delay(1);
WAIT_FOR_BIT(USBG->GRSTCTL, USB_OTG_GRSTCTL_CSRST);
usbdrv_ulpi_init(); // initialize PHY
#endif
#endif
CLEAR_BIT(USBG->GCCFG, USB_OTG_GCCFG_PWRDWN); // power the internal transceiver peripheral
CLEAR_BIT(USBG->GAHBCFG, USB_OTG_GAHBCFG_GINT); // mask all interrupts for now
CLEAR_BIT(USBG->GUSBCFG, USB_OTG_GUSBCFG_HNPCAP | USB_OTG_GUSBCFG_SRPCAP); // disable HNP and SRP
WRITE_FIELD(USBG->GUSBCFG, USB_OTG_GUSBCFG_TRDT, TRDT_VALUE); // set TRDT according to the RM
// WRITE_FIELD(USBG->GUSBCFG, USB_OTG_GUSBCFG_TOCAL, TOCAL_VALUE); // set TOCAL
CLEAR_BIT(USBG->GUSBCFG, USB_OTG_GUSBCFG_FHMOD); // clear Host mode forcing
SET_BIT(USBG->GUSBCFG, USB_OTG_GUSBCFG_FDMOD); // force Device mode
HAL_Delay(25); // wait for Device mode forcing propagation
WAIT_FOR_BIT(USBG->GINTSTS, 0b1);
// SET_BIT(USBD->DCTL, USB_OTG_DCTL_SDIS); // soft disconnect peripheral (should be upper, but since it's controlled by a Device register, cannot be set before switching to device mode)
#if defined(USB_STM32H7)
CLEAR_BIT(USBG->GCCFG, USB_OTG_GCCFG_VBDEN); // turn off VBUSSENSE
SET_BIT(USBG->GOTGCTL, USB_OTG_GOTGCTL_BVALOEN | USB_OTG_GOTGCTL_BVALOVAL); // force B-session
#elif defined(USB_STM32F4)
SET_BIT(USBG->GCCFG, USB_OTG_GCCFG_NOVBUSSENS); // turn off VBUSSENSE
CLEAR_BIT(USBG->GCCFG, USB_OTG_GCCFG_VBUSBSEN | USB_OTG_GCCFG_VBUSASEN);
#endif
// HAL_Delay(50); // it takes time to forcing Device mode takes effect
#ifdef USB_HIGH_SPEED
// WRITE_FIELD(USBD->DCFG, USB_OTG_DCFG_DSPD, USB_LINESPEED_FULL_SPEED);
// WRITE_FIELD(USBD->DCFG, USB_OTG_DCFG_DSPD, USB_LINESPEED_HIGH_SPEED_ULPI);
WRITE_FIELD(USBD->DCFG, USB_OTG_DCFG_DSPD, USB_LINESPEED_FULL_SPEED_ULPI);
#else
WRITE_FIELD(USBD->DCFG, USB_OTG_DCFG_DSPD, USB_LINESPEED_FULL_SPEED); // there's no other possible option
#endif
// allow specific interrupts
uint32_t intmask = /*USB_OTG_GINTMSK_WUIM | // Wake up */
USB_OTG_GINTMSK_OEPINT | // OUT EP events
USB_OTG_GINTMSK_IEPINT | // IN EP events
USB_OTG_GINTMSK_ENUMDNEM | // (Linespeed) Enumeration (negotiation) done
USB_OTG_GINTMSK_USBRST | // USB Reset
USB_OTG_GINTMSK_USBSUSPM | // USB Suspend
USB_OTG_GINTMSK_RXFLVLM; // RX FIFO level (signal if non-empty)
USBG->GINTMSK = intmask;
// set global NAK on all Endpoints
// usbdrv_set_global_NAK(USB_IN, true);
// usbdrv_set_global_NAK(USB_OUT, true);
// flush Tx and Rx FIFOs
usbdrv_flush_rx_fifo();
usbdrv_flush_tx_fifo(USB_FLUSH_TX_FIFO_ALL);
// make Tx FIFO empty interrupt fire when Tx FIFO is emtpy
// SET_BIT(USBG->GAHBCFG, USB_OTG_GAHBCFG_TXFELVL);
// set masks for endpoint interrupts
SET_BIT(USBD->DIEPMSK, USB_OTG_DIEPMSK_XFRCM | USB_OTG_DIEPMSK_TOM | USB_OTG_DIEPMSK_ITTXFEMSK); // transfer complete, timeout and Tx FIFO empty while receiving IN for IN EPs
SET_BIT(USBD->DOEPMSK, USB_OTG_DOEPMSK_XFRCM | USB_OTG_DOEPMSK_STUPM); // transfer complete and SETUP complete for OUT EPs
// mask all endpoint interrupts in both directions and also clear flags
USBD->DAINTMSK = 0;
USBD->DAINT = 0;
// enbale global interrupts
SET_BIT(USBG->GAHBCFG, USB_OTG_GAHBCFG_GINT);
}
// connect to or disconnect from the bus
void usbdrv_power_and_connect(bool en) {
if (en) { // ON
CLEAR_BIT(USBD->DCTL, USB_OTG_DCTL_SDIS);
#ifndef USB_HIGH_SPEED
SET_BIT(USBG->GCCFG, USB_OTG_GCCFG_PWRDWN); // actually, this is power UP
#endif
} else { // OFF
SET_BIT(USBD->DCTL, USB_OTG_DCTL_SDIS);
#ifndef USB_HIGH_SPEED
CLEAR_BIT(USBG->GCCFG, USB_OTG_GCCFG_PWRDWN);
#endif
}
}
// ---------------
// preload usb endpoint config
void usbdrv_preload_endpoint_config(uint8_t ep, uint8_t dir, const USBDRV_EpConfig *cfg) {
USBMSG("PRELOAD: %u %s\n", ep, dir ? "IN" : "OUT");
if (dir == USB_OUT) {
gs.ep_OUT[ep] = *cfg;
gs.ep_OUT[ep].is_configured = true;
} else {
gs.ep_IN[ep] = *cfg;
gs.ep_IN[ep].is_configured = true;
}
}
// clear endpoint config
void usbdrv_clear_endpoint_config() {
memset(&gs.ep_OUT, 0, USB_NUM_OF_ENDPOINTS * sizeof(USBDRV_EpConfig));
memset(&gs.ep_IN, 0, USB_NUM_OF_ENDPOINTS * sizeof(USBDRV_EpConfig));
}
// apply preloaded endpoint configuration
void usbdrv_apply_endpoint_config() {
for (uint8_t i = 0; i < USB_NUM_OF_ENDPOINTS; i++) {
// OUT EPs
if (gs.ep_OUT[i].is_configured) {
usbdrv_configure_endpoint(i, USB_OUT, gs.ep_OUT + i);
}
// IN EPs
if (gs.ep_IN[i].is_configured) {
usbdrv_configure_endpoint(i, USB_IN, gs.ep_IN + i);
}
}
}
// fetch endpoint configuration from descriptor dump
void usbdrv_fetch_endpoint_configuration(uint8_t config_index) {
const uint8_t *fullConfDesc = (const uint8_t *)confDescs[config_index]; // point an array to the beginning of the full configuration
const USB_ConfigurationDesc *confDesc = (const USB_ConfigurationDesc *)confDescs[config_index]; // fetch the leading configuration descriptor
// look up endpoint descriptors
const uint8_t *iter = fullConfDesc;
while (iter < (fullConfDesc + confDesc->wTotalLength)) {
if (iter[1] == UD_Endpoint) { // Endpoint descriptor found
USB_EndpointDesc epDesc;
memcpy(&epDesc, iter, iter[0]); // fetch EP descriptor by copy, since desciptor start address is NOT aligned
USBDRV_EpConfig cfg; // fill-in configuration
cfg.max_packet_size = epDesc.wMaxPacketSize;
cfg.responding_NAK = false;
cfg.type = epDesc.bmAttributes & 0b11;
cfg.service_interval = epDesc.bInterval;
// fetch endpoint address
uint8_t dir = (epDesc.bEndpointAddress >> 7);
uint8_t n = epDesc.bEndpointAddress & 0x7F;
// apply configuration
usbdrv_preload_endpoint_config(n, dir, &cfg);
}
// advance iterator using the bLength field (first byte in a descriptor)
iter += iter[0];
}
usbdrv_build_fifo();
usbdrv_apply_endpoint_config();
}
#define USB_MIN_FIFO_SIZE (64)
#define USB_FIFO_MARGIN (8)
#define USB_RX_FIFO_SETUP_RESERVATION_DWORDS (10)
#define USB_MIN_GROSS_TX_FIFO_SIZE (2 * USB_MIN_EP_FIFO_SIZE)
#if defined(USB_STM32F4)
#ifndef USB_HIGH_SPEED
#define USB_MIN_GROSS_RX_FIFO_SIZE (2 * USB_MIN_EP_FIFO_SIZE + USB_RX_FIFO_SETUP_RESERVATION_DWORDS * 4)
#else
#define USB_MIN_GROSS_RX_FIFO_SIZE (1024)
#endif
#elif defined(USB_STM32H7)
#define USB_MIN_GROSS_RX_FIFO_SIZE (256)
#endif
#define USBDRV_ADDR_TABLE_STR_LEN (255)
static char usbdrv_addr_table[USBDRV_ADDR_TABLE_STR_LEN + 1];
// build FIFO (compute addresses)
void usbdrv_build_fifo() {
// ---- OUT ----
uint16_t next_fifo_addr = 0x00; // Rx FIFO begins at address zero
uint16_t largest_packet_size = 0; // largest packet size
uint16_t control_ep_count = 0; // number of control endpoints
uint16_t out_ep_count = 0; // count of OUT pipes
for (uint8_t i = 0; i < USB_NUM_OF_ENDPOINTS; i++) { // gather config information
// look for largest packet size
if (gs.ep_OUT[i].is_configured) { // examine OUT EPs
largest_packet_size = MAX(largest_packet_size, gs.ep_OUT[i].max_packet_size);
out_ep_count++;
}
if (gs.ep_IN[i].is_configured) { // examine IN EPs
largest_packet_size = MAX(largest_packet_size, gs.ep_IN[i].max_packet_size);
}
// count control endpoints
if (((gs.ep_OUT[i].is_configured) && (gs.ep_OUT[i].type == UT_Control)) ||
((gs.ep_IN[i].is_configured) && (gs.ep_IN[i].type == UT_Control))) {
control_ep_count++;
}
}
// RX FIFO size calculation expression from the RM
uint16_t fifo_size_dwords = (5 * control_ep_count + 8) + (CEILDIV4(largest_packet_size) + 1) + (2 * out_ep_count) + 1; // calculate RX FIFO size in DWORDS
uint16_t fifo_size = fifo_size_dwords * 4; // calculate RX FIFO size in bytes
fifo_size = CEIL4(MAX(fifo_size, USB_MIN_GROSS_RX_FIFO_SIZE)); // RX FIFO should be at least this large
// fifo_size *= 2; // TODO:
gs.rx_fifo_size = fifo_size; // save Rx FIFO size for later
next_fifo_addr += fifo_size; // advance next FIFO address
usbdrv_set_rx_fifo_size(fifo_size); // set Rx FIFO size in hardware
uint32_t str_offset = SNPRINTF(usbdrv_addr_table, USBDRV_ADDR_TABLE_STR_LEN, "RX: 000-%03x (%u)\r\n", fifo_size - 1, fifo_size);
// ---- IN ----
for (uint8_t i = 0; i < USB_NUM_OF_ENDPOINTS; i++) {
USBDRV_EpConfig *cfg = &gs.ep_IN[i];
if (cfg->is_configured) {
cfg->fifo_size = CEIL4(MAX(USB_MIN_GROSS_TX_FIFO_SIZE, cfg->max_packet_size + 64)); // correct FIFO size if necessary
cfg->fifo_address = next_fifo_addr; // store FIFO address
cfg->zlp_next = false;
str_offset += SNPRINTF(usbdrv_addr_table + str_offset, USBDRV_ADDR_TABLE_STR_LEN - str_offset, "TX%u: %03x-%03x (%u)\r\n", i, next_fifo_addr, next_fifo_addr + cfg->fifo_size - 1, cfg->fifo_size);
// cfg->txp = false; // no transfer is in progress
next_fifo_addr += cfg->fifo_size; // advance next address
}
}
}
const char *usbdrv_get_fifo_addr_table() {
return usbdrv_addr_table;
}
// create an initial setup for EP0 in both directions
void usbdrv_initial_ep0_setup() {
// setup EP0 OUT and IN
USBDRV_EpConfig ep_cfg;
ep_cfg.max_packet_size = 64;
ep_cfg.responding_NAK = false;
usbdrv_preload_endpoint_config(0, USB_OUT, &ep_cfg);
usbdrv_preload_endpoint_config(0, USB_IN, &ep_cfg);
// build FIFO
usbdrv_build_fifo();
// configure endpoints
usbdrv_apply_endpoint_config();
// turn off global NAK
usbdrv_set_global_NAK(USB_IN, false);
usbdrv_set_global_NAK(USB_OUT, false);
}
// ---------------
// addresses of specific DIEPTXF registers, addresses from the RM
static uint32_t *USB_pDIEPTXF[4] = {
(uint32_t *)(((uint32_t)USBG) + 0x028), // DIEPTXF0
(uint32_t *)(((uint32_t)USBG) + 0x104), // DIEPTXF1
(uint32_t *)(((uint32_t)USBG) + 0x108), // DIEPTXF2
(uint32_t *)(((uint32_t)USBG) + 0x10C), // DIEPTXF3
// TODO: HS USB controller has more endpoints
};
// configure USB endpoint
void usbdrv_configure_endpoint(uint8_t ep, uint8_t dir, const USBDRV_EpConfig *cfg) {
if (dir == USB_OUT) { // ---- OUT ----
if (ep == 0) { // SPECIAL handling on EP0
WRITE_FIELD(USBOUTEP[0].DOEPCTL, USB_OTG_DOEPCTL_MPSIZ, 0); // fix in 64 bytes
WRITE_FIELD(USBOUTEP[0].DOEPTSIZ, USB_OTG_DOEPTSIZ_STUPCNT, 3); // SETUP transaction stands of three packets
} else {
WRITE_FIELD(USBOUTEP[ep].DOEPCTL, USB_OTG_DOEPCTL_EPTYP, cfg->type); // program endpoint type
WRITE_FIELD(USBOUTEP[ep].DOEPCTL, USB_OTG_DOEPCTL_MPSIZ, cfg->max_packet_size); // program maximum packet size
SET_BIT(USBOUTEP[ep].DOEPCTL, USB_OTG_DOEPCTL_USBAEP); // the endpoint is active in the current configuration
}
// ---- common for all endpoints ----
// program maximum packet size
// WRITE_FIELD(USBOUTEP[ep].DOEPTSIZ, USB_OTG_DOEPTSIZ_XFRSIZ, cfg->max_packet_size); // TODO:
// enable interrupt
SET_BIT(USBD->DAINTMSK, 1 << (USB_OTG_DAINTMSK_OEPM_Pos + ep));
// NAK processing
if (cfg->responding_NAK) {
SET_BIT(USBOUTEP[ep].DOEPCTL, USB_OTG_DOEPCTL_SNAK); // send NAK
} else {
usbdrv_arm_OUT_endpoint(ep, cfg->max_packet_size);
}
} else { // ---- IN ----
if (ep == 0) { // SPECIAL handling on EP0
WRITE_FIELD(USBINEP[0].DIEPCTL, USB_OTG_DIEPCTL_MPSIZ, 0); // fix in 64 bytes
} else {
WRITE_FIELD(USBINEP[ep].DIEPCTL, USB_OTG_DIEPCTL_EPTYP, cfg->type); // program endpoint type
WRITE_FIELD(USBINEP[ep].DIEPCTL, USB_OTG_DIEPCTL_MPSIZ, cfg->max_packet_size); // program maximum packet size
SET_BIT(USBINEP[ep].DIEPCTL, USB_OTG_DIEPCTL_USBAEP); // the endpoint is active in the current configuration
}
// ---- common for all endpoints ----
// program FIFO corresponding FIFO number
WRITE_FIELD(USBINEP[ep].DIEPCTL, USB_OTG_DIEPCTL_TXFNUM, ep);
// store Tx FIFO size (both fields are WORD units, NOT bytes, RM is missing this information!)
uint32_t tx_fifo_config = ((cfg->fifo_size >> 2) << USB_OTG_DIEPTXF_INEPTXFD_Pos) | (cfg->fifo_address >> 2); // combine size in DWORDs and address
*(USB_pDIEPTXF[ep]) = tx_fifo_config; // save
// enable interrupt
// SET_BIT(USBD->DAINTMSK, 1 << ep);
// NAK processing
if (cfg->responding_NAK) {
SET_BIT(USBINEP[ep].DIEPCTL, USB_OTG_DIEPCTL_SNAK); // send NAK
} else {
SET_BIT(USBINEP[ep].DIEPCTL, USB_OTG_DIEPCTL_CNAK); // clear sending NAK
}
}
}
// deconfigure USB endpoint
void usbdrv_deconfigure_endpoint(uint8_t ep, uint8_t dir) {
if (ep == 0) { // EP0 cannot be deconfigured
return;
}
if (dir == USB_OUT) { // ---- OUT ----
CLEAR_BIT(USBOUTEP[ep].DOEPCTL, USB_OTG_DOEPCTL_USBAEP); // deactivate endpoint
CLEAR_BIT(USBD->DAINTMSK, 1 << (USB_OTG_DAINTMSK_OEPM_Pos + ep)); // disable interrupt
} else { // ---- IN ----
CLEAR_BIT(USBD->DAINTMSK, 1 << ep); // disable interrupt
usbdrv_flush_tx_fifo(ep); // flush Tx FIFO
SET_BIT(USBINEP[ep].DIEPCTL, USB_OTG_DIEPCTL_USBAEP); // deactivate endpoint
}
}
// ---------------
// flush specific or all Tx FIFOs
void usbdrv_flush_tx_fifo(uint8_t n) {
WAIT_FOR_BIT(USBG->GRSTCTL, USB_OTG_GRSTCTL_TXFFLSH); // wait for previous request to conclude
WRITE_FIELD(USBG->GRSTCTL, USB_OTG_GRSTCTL_TXFNUM, n); // issue flush
WAIT_FOR_BIT(USBG->GRSTCTL, USB_OTG_GRSTCTL_TXFFLSH); // wait for our request to conclude
}
// flush the Rx FIFO
void usbdrv_flush_rx_fifo() {
WAIT_FOR_BIT(USBG->GRSTCTL, USB_OTG_GRSTCTL_RXFFLSH);
SET_BIT(USBG->GRSTCTL, USB_OTG_GRSTCTL_RXFFLSH); // issue flush
WAIT_FOR_BIT(USBG->GRSTCTL, USB_OTG_GRSTCTL_RXFFLSH);
}
// set Rx FIFO size
void usbdrv_set_rx_fifo_size(uint16_t size) {
USBG->GRXFSIZ = CEILDIV4(size);
}
// ---------------
// stall endpoint
void usbdrv_stall_endpoint(uint8_t ep, uint8_t dir, bool stall) {
USB_OTG_INEndpointTypeDef *inep = USBINEP + ep;
// USB_OTG_OUTEndpointTypeDef *outep = USBOUTEP + ep;
if (stall) {
if (dir == USB_IN) {
if (ep != 0) { // special treatment for EP0
SET_BIT(inep->DIEPCTL, USB_OTG_DIEPCTL_EPDIS); // disable endpoint
}
SET_BIT(inep->DIEPCTL, USB_OTG_DIEPCTL_STALL); // stall endpoint
}
if (ep != 0) { // EP0 cannot be disabled
// wait for endpoint disable to get effective
WAIT_FOR_nBIT(inep->DIEPINT, USB_OTG_DIEPINT_EPDISD);
CLEAR_BIT(inep->DIEPINT, USB_OTG_DIEPINT_EPDISD);
}
// flush trnasmit FIFO
usbdrv_flush_tx_fifo(ep);
} else {
if (dir == USB_IN) {
if (ep != 0) { // special treatment for EP0
SET_BIT(inep->DIEPCTL, USB_OTG_DIEPCTL_EPENA); // enable endpoint
}
CLEAR_BIT(inep->DIEPCTL, USB_OTG_DIEPCTL_STALL); // clear endpoint stall
}
}
}
// set global NAK
void usbdrv_set_global_NAK(uint8_t dir, bool en) {
if (en) {
if (dir == USB_IN) {
SET_BIT(USBD->DCTL, USB_OTG_DCTL_SGINAK);
} else {
SET_BIT(USBD->DCTL, USB_OTG_DCTL_SGONAK);
}
} else {
if (dir == USB_IN) {
SET_BIT(USBD->DCTL, USB_OTG_DCTL_CGINAK);
} else {
SET_BIT(USBD->DCTL, USB_OTG_DCTL_CGONAK);
}
}
}
// -------------------
// fetch received data from RX FIFO to receive buffer
void usbdrv_fetch_received_data(uint8_t ep, uint16_t len) {
if (len > 0) {
volatile uint32_t *p = USBFIFO(ep);
uint16_t len_dwords = CEILDIV4(len);
for (uint16_t i = 0; i < len_dwords; i++) {
uint32_t dword = p[i];
uint16_t i0 = i * 4;
gs.rx_buf[i0] = dword & 0xFF;
gs.rx_buf[i0 + 1] = (dword >> 8) & 0xFF;
gs.rx_buf[i0 + 2] = (dword >> 16) & 0xFF;
gs.rx_buf[i0 + 3] = (dword >> 24) & 0xFF;
}
}
gs.rx_buf_level = len;
}
// write data to specific endpoint FIFO
uint32_t usbdrv_arm_IN_endpoint(uint8_t ep, const uint8_t *data, uint16_t len) {
// determine if a transmission is in progress or not
bool txp = READ_BIT(USBINEP[ep].DIEPCTL, USB_OTG_DIEPCTL_EPENA);
uint16_t mps = gs.ep_IN[ep].max_packet_size; // fetch maximum packet size
// determine final write size
uint32_t freeSize = USBINEP[ep].DTXFSTS * sizeof(uint32_t); // get free transmit buffer size
uint16_t writeSize = 0;
if (txp) { // transaction is in progress
uint32_t remainingBytes = USBINEP[ep].DIEPTSIZ & USB_OTG_DIEPTSIZ_XFRSIZ; // acquire remaining bytes
if (len >= mps) { // write only full-sized packets, or a short packet
uint16_t mws = MIN(freeSize, len); // maximum possible write size
uint16_t fpc = mws / mps; // full packet count
writeSize = fpc * mps; // form write size
} else { // length is less then a full packet size
if (len <= freeSize) { // packet can be written
writeSize = len;
} else {
writeSize = 0;
}
}
// adjust write size to remaining size
writeSize = MIN(remainingBytes, writeSize);
} else { // no transaction is in progress
writeSize = MIN(freeSize, len);
}
// if no transmission is in progress
if (!txp) {
// calculate packet count based on max packet size
uint16_t packet_count = 1; // for ZLPs
if (len > 0) { // if length is nonzero
packet_count = len / mps + (((len % mps) > 0) ? 1 : 0); // a transfer may contain multiple packets
}
// set zlp_next if transfer size is integer multiple of max packet size and auto ZLP is on
gs.ep_IN[ep].zlp_next = (len > 0) && ((len % mps) == 0);
// program DIEPTSIZ with transfer length
USBINEP[ep].DIEPTSIZ = /*(packet_count << USB_OTG_DIEPTSIZ_MULCNT_Pos) |*/ (packet_count << USB_OTG_DIEPTSIZ_PKTCNT_Pos) | len;
// enable endpoint and cancel responding NAK
SET_BIT(USBINEP[ep].DIEPCTL, USB_OTG_DIEPCTL_EPENA | USB_OTG_DIEPCTL_CNAK);
// enable endpoint interrupts
SET_BIT(USBD->DAINTMSK, 1 << ep);
}
// turn on interrupt generation only, if this is NOT the last FIFO write considering the current transfer
if (len > writeSize) {
USBD->DIEPEMPMSK |= ((uint32_t)(1 << ep));
}
// disable ALL USB interrupts to prevent access to specific registers (see errata)
CLEAR_BIT(USBG->GAHBCFG, USB_OTG_GAHBCFG_GINT);
// WAIT_FOR_nBIT(USBINEP[ep].DIEPINT, USB_OTG_DIEPINT_TXFE);
// https://github.com/iliasam/STM32F4_USB_MICROPHONE/blob/master/Libraries/STM32_USB_OTG_Driver/src/usb_dcd_int.c#L655
// https://github.com/iliasam/STM32F4_USB_MICROPHONE/blob/master/Libraries/STM32_USB_OTG_Driver/src/usb_core.c#L168
// push full dwords
volatile uint32_t *p = (uint32_t *)USBFIFO(ep);
uint32_t floorlen_dwords = writeSize >> 2;
for (uint16_t i = 0; i < floorlen_dwords; i++) {
uint16_t i0 = 4 * i;
uint32_t dword = data[i0] | (data[i0 + 1] << 8) | (data[i0 + 2] << 16) | (data[i0 + 3] << 24);
*p = dword;
}
// push the remaining partial dword
uint8_t rem_bytes = writeSize & 0b11;
if (rem_bytes > 0) {
uint32_t rem_dword = 0;
uint16_t rem_start = writeSize - rem_bytes;
for (int16_t i = writeSize - 1; i >= rem_start; i--) {
rem_dword = (rem_dword << 8) | data[i];
}
*p = rem_dword;
}
// unmask USB interrupts
SET_BIT(USBG->GAHBCFG, USB_OTG_GAHBCFG_GINT);
// return with written size
return writeSize;
}
// arm OUT endpoint
uint32_t usbdrv_arm_OUT_endpoint(uint8_t ep, uint8_t size) {
// arm endpoint only if it was not armed before
if (READ_BIT(USBOUTEP[ep].DOEPCTL, USB_OTG_DOEPCTL_EPENA)) {
return 0;
}
// cap size at max packet size defined for this endpoint
size = MIN(gs.ep_OUT[ep].max_packet_size, size);
// write registers
uint32_t doeptsiz = USBOUTEP[ep].DOEPTSIZ;
doeptsiz &= ~(USB_OTG_DOEPTSIZ_XFRSIZ); // clear XFERSIZ bits
doeptsiz |= USB_OTG_DOEPTSIZ_PKTCNT | size; // program DIEPTSIZ with maximum (expected) transfer length and set PCKTCNT to make ready for reception
USBOUTEP[ep].DOEPTSIZ = doeptsiz; // write value to the actual register
SET_BIT(USBOUTEP[ep].DOEPCTL, USB_OTG_DOEPCTL_EPENA | USB_OTG_DOEPCTL_CNAK); // enable endpoint and clear NAK
// return with armed size
return size;
}
void usbdrv_autoarm_OUT_endpoint(uint8_t ep) {
gs.ep_OUT[ep].autoarm = true;
}
void usbdrv_enable_endpoint_interrupt(uint8_t ep, uint8_t dir, bool en) {
uint32_t mask = 1 << (ep + ((dir == USB_OUT) ? USB_OTG_DAINTMSK_OEPM_Pos : 0));
if (en) {
SET_BIT(USBD->DAINTMSK, mask);
} else {
CLEAR_BIT(USBD->DAINTMSK, mask);
}
}
// ----------------
void usbdrv_set_address(uint8_t addr) {
gs.address = addr;
WRITE_FIELD(USBD->DCFG, USB_OTG_DCFG_DAD, gs.address);
}
// ----------------
#if USB_EVENT_PROCESSING_IN_OS_THREAD
// push event onto the event queue
void usbdrv_push_event(uint32_t evt_code, USBDRV_EventData *evt_data) {
USBDRV_EventCompound evt_cpd;
if (evt_data != NULL) {
evt_cpd.data = *evt_data;
}
evt_cpd.code = evt_code;
osMessageQueuePut(gs.event_queue, &evt_cpd, 0, 0);
}
static void usbdrv_thread(void *param) {
for (;;) {
USBDRV_EventCompound evt_cpd;
osMessageQueueGet(gs.event_queue, &evt_cpd, 0, osWaitForever);
usbdrv_process_event(evt_cpd.code, NULL);
}
}
#endif
// ----------------
// receive packet
void usbdrv_process_rx_fifo_top(USBDRV_EventData *evt_data) {
uint32_t rxstat = USBG->GRXSTSP; // POP (not just read) latest FIFO status word
uint8_t pckt_status = READ_FIELD(rxstat, USB_OTG_GRXSTSP_PKTSTS); // read packet status
uint8_t data_pid = READ_FIELD(rxstat, USB_OTG_GRXSTSP_DPID); // read data PID
uint8_t byte_count = READ_FIELD(rxstat, USB_OTG_GRXSTSP_BCNT); // byte count
uint8_t ep_num = READ_FIELD(rxstat, USB_OTG_GRXSTSP_EPNUM); // read endpoint number
// copy to output structure
evt_data->rx.pckt_status = pckt_status;
evt_data->rx.data_pid = data_pid;
evt_data->rx.byte_count = byte_count;
evt_data->rx.ep_num = ep_num;
USBMSG("%s [%u] %u\n", FIFO_STATUS_STR[pckt_status - 1], ep_num, byte_count);
}
// always pass ALIGNED data!
__weak void usbcore_process_setup_pckt(const uint8_t *data, uint16_t size, uint8_t stage) {
return;
}
__weak void usbcore_process_nonsetup_event(USBDRV_CallbackCompound *cbcpd) {
return;
}
// process USB event
void usbdrv_process_event(uint8_t evt_code, USBDRV_EventData *evt_data) {
if (evt_code == USB_EVT_USB_RESET) { // reset takes precedence over anything else TODO
SET_BIT(USBG->GRSTCTL, USB_OTG_GRSTCTL_CSRST);
WAIT_FOR_BIT(USBG->GRSTCTL, USB_OTG_GRSTCTL_CSRST);
usbdrv_reset();
USBMSG("RESET\n");
return;
}
switch (gs.state) {
case USB_FSM_INITIAL_WAIT_SPEEDNEG: // wait for speed negotitation to conclude
if (evt_code == USB_EVT_SPEEDNEG_DONE) {
gs.state = USB_FSM_SETUP_OPERATE; // wait for speed negotiation
}
break;
case USB_FSM_SETUP_OPERATE: { // expect SETUP transactions first, then everything else as well
switch (evt_code) {
case USB_EVT_RECEPTION_DONE: { // reception done
USBDRV_EventData evt_data = {0};
usbdrv_process_rx_fifo_top(&evt_data); // process rx fifo top
// fetch data if data are available
if ((evt_data.rx.pckt_status == USB_PCKT_STATUS_SETUP_DATA_RECV) ||
(evt_data.rx.pckt_status == USB_PCKT_STATUS_OUT_DATA_RECV)) {
usbdrv_fetch_received_data(evt_data.rx.ep_num, evt_data.rx.byte_count); // fetch the data
}
// act according to what we have received
if (evt_data.rx.ep_num == 0) { // EP0 special treatment
int stage = -1;
if (evt_data.rx.pckt_status == USB_PCKT_STATUS_SETUP_CPLT) {
stage = UST_SETUP;
USBMSG("--SETUP\n");
} else if (evt_data.rx.pckt_status == USB_PCKT_STATUS_OUT_TRANSFER_CPLT) {
stage = UST_DATA;
USBMSG("--DATA\n");
}
// process setup packet
if (stage != -1) {
usbcore_process_setup_pckt(gs.rx_buf, gs.rx_buf_level, stage);
}
// SET_BIT(USBG->GINTMSK, USB_OTG_GINTMSK_RXFLVLM); // unmask interrupt
} else { // not EP0
if (evt_data.rx.pckt_status == USB_PCKT_STATUS_OUT_DATA_RECV) { // TODO: "maybe the"????
USBDRV_CallbackCompound cbcpd;
cbcpd.ep = evt_data.rx.ep_num;
cbcpd.dir = USB_OUT;
cbcpd.code = USB_CBC_OUT;
cbcpd.data = gs.rx_buf;
cbcpd.size = gs.rx_buf_level;
usbcore_process_nonsetup_event(&cbcpd);
}
}
break;
}
case USB_EVT_OUT_DONE: { // some OUT operations have finished
for (uint8_t ep = 0; ep < USB_NUM_OF_ENDPOINTS; ep++) {
if (gs.ep_OUT[ep].is_configured) { // if the endpoint is running
if (READ_BIT(USBOUTEP[ep].DOEPINT, USB_OTG_DOEPINT_STUP)) { // setup done
SET_BIT(USBOUTEP[ep].DOEPINT, USB_OTG_DOEPINT_STUP);
USBMSG("SETUP\n");
}
if (READ_BIT(USBOUTEP[ep].DOEPINT, USB_OTG_DOEPINT_XFRC)) { // OUT transaction done
SET_BIT(USBOUTEP[ep].DOEPINT, USB_OTG_DOEPINT_XFRC);
USBMSG("OUT\n");
if ((ep == 0) || (gs.ep_OUT[ep].autoarm)) { // EP0 must always be armed
usbdrv_arm_OUT_endpoint(ep, gs.ep_OUT[ep].max_packet_size); // arm endpoint
gs.ep_OUT[ep].autoarm = false; // clear autoarm flag
}
}
}
}
break;
}
case USB_EVT_IN_DONE: { // some IN operations have finished
// callback compound
USBDRV_CallbackCompound cbcpd;
cbcpd.dir = USB_IN;
cbcpd.data = NULL;
cbcpd.size = 0;
for (uint8_t ep = 0; ep < USB_NUM_OF_ENDPOINTS; ep++) {
cbcpd.ep = ep;
bool ep_on = USBD->DAINTMSK & (1 << ep); // decide if this endpoint is currently enable for transmission based on its endpoint mask
if (gs.ep_IN[ep].is_configured && ep_on) { // if the endpoint is running
if (READ_BIT(USBINEP[ep].DIEPINT, USB_OTG_DIEPINT_TOC)) { // timeout done
SET_BIT(USBINEP[ep].DIEPINT, USB_OTG_DIEPINT_TOC);
USBMSG("TO\n");
} else if ((USBD->DIEPEMPMSK & (1 << ep)) && READ_BIT(USBINEP[ep].DIEPINT, USB_OTG_DIEPINT_TXFE)) {
// disable FIFO empty interrupt
USBD->DIEPEMPMSK &= ~((uint32_t)(1 << ep));
cbcpd.code = USB_CBC_IN_FIFOEMPTY;
usbcore_process_nonsetup_event(&cbcpd);
} else if (READ_BIT(USBINEP[ep].DIEPINT, USB_OTG_DIEPINT_XFRC)) { // IN transaction done
SET_BIT(USBINEP[ep].DIEPINT, USB_OTG_DIEPINT_XFRC);
// disable FIFO empty interrupt
USBD->DIEPEMPMSK &= ~((uint32_t)(1 << ep));
// transfer finished
// gs.ep_IN[ep].txp = false;
// see if a ZLP transmission was queued
if (gs.ep_IN[ep].zlp_next) {
usbdrv_arm_IN_endpoint(ep, NULL, 0); // send ZLP
} else { // no ZLP
USBMSG("IN [%d]\n", ep);
cbcpd.code = USB_CBC_IN_DONE;
usbcore_process_nonsetup_event(&cbcpd);
}
} else if (READ_BIT(USBINEP[ep].DIEPINT, USB_OTG_DIEPINT_ITTXFE)) { // IN endpoint IN token received with Tx FIFO empty interrupt
SET_BIT(USBINEP[ep].DIEPINT, USB_OTG_DIEPINT_ITTXFE);
// MSG("E %u\n", ep);
// USBMSG("IN FIFOEMPTY [%d]\n", ep);
// transfer finished
// gs.ep_IN[ep].txp = false;
// if (!gs.ep_IN[ep].) {
//}
// disable endpoint interrupt
usbdrv_enable_endpoint_interrupt(ep, USB_IN, false);
cbcpd.code = USB_CBC_IN_FIFOEMPTY;
usbcore_process_nonsetup_event(&cbcpd);
}
}
}
// // set new address if it's already waiting
// if (gs.new_address != 0) {
// WRITE_FIELD(USBD->DCFG, USB_OTG_DCFG_DAD, gs.new_address);
// gs.new_address = 0;
// USBMSG("ADDR SET\n");
// }
}
default:
break;
}
}
default:
break;
}
}
// ----------------
// get endpoint interrupt flag
bool usbdrv_get_endpoint_interrupt_flag(uint8_t ep, uint8_t dir) {
return (USBD->DAINT & (1 << (ep + ((dir == USB_OUT) ? USB_OTG_DAINT_OEPINT_Pos : 0)))) != 0;
}
#if USB_EVENT_PROCESSING_IN_OS_THREAD
#define PROCESS_EVENT(evt, data) usbdrv_push_event((evt), (data))
#else
#define PROCESS_EVENT(evt, data) usbdrv_process_event((evt), (data))
#endif
#ifdef USB_HIGH_SPEED
void OTG_HS_IRQHandler()
#else
#ifndef STM32H723xx
void OTG_FS_IRQHandler()
#else
void OTG_HS_IRQHandler()
#endif
#endif
{
uint32_t ints = USBG->GINTSTS;
// USB reset
if (ints & USB_OTG_GINTSTS_USBRST) {
SET_BIT(USBG->GINTSTS, USB_OTG_GINTSTS_USBRST); // clear interrupt
// usb_reset(); // reset the USB subsystem
// return;
// usbdrv_push_event(USB_EVT_USB_RESET, NULL);
return;
}
// End of enumeration (meaning NOT the USB ENUMERATION PROCESS,
// ST calls speed negotiation the enumeration, normally this
// interrupt fires only before even communication is commenced)
if (ints & USB_OTG_GINTSTS_ENUMDNE) {
SET_BIT(USBG->GINTSTS, USB_OTG_GINTSTS_ENUMDNE); // clear interrupt
PROCESS_EVENT(USB_EVT_SPEEDNEG_DONE, NULL); // process event
// usbdrv_process_event(USB_EVT_SPEEDNEG_DONE, NULL); // process event
// usbdrv_push_event(USB_EVT_SPEEDNEG_DONE, NULL); // push event
}
// Start of Frame received (like Keep-Alive in LS mode)
if (ints & USB_OTG_GINTSTS_SOF) {
SET_BIT(USBG->GINTSTS, USB_OTG_GINTSTS_SOF); // clear interrupt
}
// USB Suspend
if (ints & USB_OTG_GINTSTS_USBSUSP) {
SET_BIT(USBG->GINTSTS, USB_OTG_GINTSTS_USBSUSP); // clear interrupt
USBMSG("SUSPEND\n");
}
// OUT endpoint interrupt
if (ints & USB_OTG_GINTSTS_OEPINT) {
PROCESS_EVENT(USB_EVT_OUT_DONE, NULL);
// usbdrv_push_event(USB_EVT_OUT_DONE, NULL);
// if (USBD->DAINT & (1 << 16)) {
// if (USBOUTEP[0].DOEPINT & USB_OTG_DOEPINT_STUP) {
// CLEAR_BIT(USBOUTEP[0].DOEPINT, USB_OTG_DOEPINT_STUP);
// }
// }
}
// RX FIFO non-empty interrupt
if (ints & USB_OTG_GINTSTS_RXFLVL) {
// SET_BIT(USBG->GINTSTS, USB_OTG_GINTSTS_RXFLVL); // clear interrupt
USBMSG("RX DONE\n");
// CLEAR_BIT(USBG->GINTMSK, USB_OTG_GINTMSK_RXFLVLM); // mask interrupt until processing is done
PROCESS_EVENT(USB_EVT_RECEPTION_DONE, NULL); // process event
// usbdrv_push_event(USB_EVT_RECEPTION_DONE, NULL); // push event
}
// IN endpoint interrupt
if (ints & USB_OTG_GINTSTS_IEPINT) {
PROCESS_EVENT(USB_EVT_IN_DONE, NULL);
// usbdrv_push_event(USB_EVT_IN_DONE, NULL);
}
return;
}