- function separation done

- a load of CMake modification
This commit is contained in:
Wiesner András 2024-11-16 18:15:13 +01:00
parent 48a7ae54a3
commit 685fa77bda
10 changed files with 1339 additions and 118 deletions

View File

@ -34,19 +34,24 @@ elseif(NOT FLATUSB_DESC_SRC)
message("flatUSB: No source of descriptors passed! Please either set FLATUSB_DESC_DIR to the directory containing the descriptor files OR pass descriptor files directly by defining FLATUSB_DESC_SRC and FLATUSB_DESC_HEADER!")
endif()
if (NOT FLATUSB_DRIVER_SRC)
message("flatUSB: No USB driver passed! It's likely an error and not intentional. Please populate FLATUSB_DRIVER_SRC with the list of the USB driver files!")
endif()
message("flatUSB classes selected: ${FLATUSB_CLASSES}")
set(FLATUSB_SRC
${FLATUSB_CLASSES_SRC}
${FLATUSB_DESC_SRC}
${FLATUSB_DRIVER_SRC}
usb.c
usb_callback_event.h
usb_common.h
usb_common_types.h
usb_device_types.h
usb_driver.c
usb_driver.h
#usb_driver.c
#usb_driver.h
usb.h
# utils/gen_queue.c

View File

@ -5,7 +5,6 @@
#include "../usb_device_types.h"
#include "../usb.h"
#include "flatUSB/usb_driver.h"
#include <blocking_io/blocking_fifo.h>
@ -56,6 +55,10 @@ void usb_cdc_init(const USB_CdcAssignments *as) {
// static uint8_t replyBuf[sizeof(USB_Cdc_LineCodingStruct)];
// static void usbcore_setup_cplt_cb(uint8_t in) {
// usbcore_wake_up_endpoint(cdcs.ep_assignments.data_ep, USB_IN);
// }
static void usb_cdc_review_comm_init() {
// check if line coding was initialized
USB_Cdc_LineCodingStruct *lc = &cdcs.line_coding;
@ -67,10 +70,10 @@ static void usb_cdc_review_comm_init() {
// combine the above criteria
cdcs.commInit = lcOk && clsOk;
// wake up endpoint if initialized
if (cdcs.commInit) {
usbcore_wake_up_endpoint(cdcs.ep_assignments.data_ep, USB_IN);
}
// // wake up endpoint if initialized
// if (cdcs.commInit) {
// usbcore_register_IN_callback(0, usbcore_setup_cplt_cb);
// }
}
int usb_cdc_process_and_return(USB_CallbackEvent *cbevt) {

View File

@ -29,4 +29,19 @@
#define USBFIFO(ep) ((uint32_t *)(((uint32_t)(USBG)) + USB_OTG_FIFO_BASE + (USB_OTG_FIFO_SIZE) * (ep)))
#define USBPCGCCTL ((uint32_t *)(((uint32_t)(USBG)) + USB_OTG_PCGCCTL_BASE))
// Set TOCAL and TRDT values (see Ref. Man.)
#if defined(USB_STM32H7) /*|| defined(USB_HIGH_SPEED)*/
#define TOCAL_VALUE (0x00)
#define TRDT_VALUE (0x05)
#elif defined(USB_STM32F4)
#if !defined(USB_HIGH_SPEED)
#define TOCAL_VALUE (0x07)
#define TRDT_VALUE (0x06)
#else
#define TOCAL_VALUE (0x07)
#define TRDT_VALUE (0x09)
#endif
#endif
#endif /* CORE_USB_USB_COMMON_DEFS */

View File

@ -1,16 +1,16 @@
#ifndef CORE_USB_USB_CORE_TYPES
#define CORE_USB_USB_CORE_TYPES
#include "usb_common_types.h"
// #include "usb_common_types.h"
/* USB linespeed */
typedef enum { USB_SPD_UNKNOWN = 0b00, USB_SPD_LOW = 0b01, USB_SPD_FULL = 0b11 } USB_Speed;
// /* USB linespeed */
// typedef enum { USB_SPD_UNKNOWN = 0b00, USB_SPD_LOW = 0b01, USB_SPD_FULL = 0b11 } USB_Speed;
/* USB core state */
typedef struct
{
uint8_t linespeed; // USB linespeed
} USB_CoreState;
// /* USB core state */
// typedef struct
// {
// uint8_t linespeed; // USB linespeed
// } USB_CoreState;
#endif /* CORE_USB_USB_CORE_TYPES */

View File

@ -1,11 +1,40 @@
#include "usb_drv.h"
#include "flatUSB_config.h"
#include <stdint.h>
#include <string.h>
#include "stm32f4xx_hal.h"
#include "flatUSB_config.h"
#include "usb_driver_common.h"
#include FLATUSB_DESCRIPTOR_HEADER
#include "common_defs.h"
#include "usb_common.h"
#include "usb_common_defs.h"
// ------------------------
#define USB_RX_BUF_SIZE (512)
static USBDRV_GlobalState gs; // global USB state
static uint8_t rx_buf[USB_RX_BUF_SIZE] DWORD_ALIGN; // receive buffer
static USBDRV_IN_cb cbs[USB_NUM_OF_ENDPOINTS]; // callbacks for IN completion
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
// ------------------------
#ifdef USBDBGMSG
static const char *FIFO_STATUS_STR[6] = {
"GLOBAL OUT NAK",
"OUT DATA RECV",
"OUT TRANSFER CPLT",
"OUT SETUP CPLT",
"",
"OUT SETUP RECV"};
#endif
// ------------------------
@ -17,12 +46,48 @@ __weak void usbdrv_ulpi_init() {
// ------------------------
void usbdrv_register_IN_complete_cb(uint8_t ep, USBDRV_IN_cb cb) {
cbs[ep] = cb;
}
// ------------------------
static USB_DrvIntf drvIntf;
void usbdrv_init_intf() {
drvIntf.init = usbdrv_init;
drvIntf.reset = usbdrv_reset;
drvIntf.stall = usbdrv_stall_endpoint;
drvIntf.arm_IN = usbdrv_arm_IN_endpoint;
drvIntf.arm_OUT = usbdrv_arm_OUT_endpoint;
drvIntf.set_address = usbdrv_set_address;
drvIntf.set_config = usbdrv_fetch_endpoint_configuration;
drvIntf.autoarm = usbdrv_autoarm_OUT_endpoint;
drvIntf.en_ep_irq = usbdrv_enable_endpoint_interrupt;
drvIntf.reg_IN_cb = usbdrv_register_IN_complete_cb;
}
USB_DrvIntf *usbdrv_get_intf() {
return &drvIntf;
}
// ------------------------
#if USB_INTERNAL && USB_UPLI
#error "Select just one from USB_INTERNAL and USB_ULPI"
#error "Select just one from USB_INTERNAL and USB_ULPI!"
#endif
// issue a hardware reset
static void usbdrv_hw_reset() {
WAIT_FOR_nBIT_DELAY(USBG->GRSTCTL, USB_OTG_GRSTCTL_AHBIDL, 1); // wait for AHB transactions to cease
SET_BIT(USBG->GRSTCTL, USB_OTG_GRSTCTL_CSRST); // reset the USB core
WAIT_FOR_BIT_DELAY(USBG->GRSTCTL, USB_OTG_GRSTCTL_CSRST, 1);
// SET_BIT(USBG->GINTSTS, USB_OTG_GINTSTS_USBRST);
}
// initialize USB peripheral
void usbdrv_periph_init() {
void usbdrv_periph_init(bool reset) {
if (!reset) {
// enable USB clock
USB_CLOCK_ENABLE();
@ -40,24 +105,24 @@ void usbdrv_periph_init() {
CLEAR_BIT(USBG->GUSBCFG, USB_OTG_GUSBCFG_ULPIEVBUSI);
#endif
WAIT_FOR_nBIT_DELAY(USBG->GRSTCTL, USB_OTG_GRSTCTL_AHBIDL, 1); // wait for AHB transactions to cease
SET_BIT(USBG->GRSTCTL, USB_OTG_GRSTCTL_CSRST); // reset the USB core
WAIT_FOR_BIT_DELAY(USBG->GRSTCTL, USB_OTG_GRSTCTL_CSRST, 1);
usbdrv_hw_reset(); // commence a hardware reset
#if USB_ULPI
usbdrv_ulpi_init(); // initialize PHY
#endif
CLEAR_BIT(USBG->GCCFG, USB_OTG_GCCFG_PWRDWN); // power the internal transceiver peripheral
}
CLEAR_BIT(USBG->GAHBCFG, USB_OTG_GAHBCFG_GINT); // mask all interrupts for now
CLEAR_BIT(USBG->GUSBCFG, USB_OTG_GUSBCFG_HNPCAP | USB_OTG_GUSBCFG_SRPCAP); // disable HNP and SRP
WRITE_FIELD(USBG->GUSBCFG, USB_OTG_GUSBCFG_TRDT, TRDT_VALUE); // set TRDT according to the RM
WRITE_FIELD(USBG->GUSBCFG, USB_OTG_GUSBCFG_TOCAL, TOCAL_VALUE); // set TOCAL
CLEAR_BIT(USBG->GUSBCFG, USB_OTG_GUSBCFG_FHMOD); // clear Host mode forcing
SET_BIT(USBG->GUSBCFG, USB_OTG_GUSBCFG_FDMOD); // force Device mode
HAL_Delay(25); // wait for Device mode forcing propagation
USB_DELAY(25); // wait for Device mode forcing propagation
WAIT_FOR_BIT(USBG->GINTSTS, 0b1);
// SET_BIT(USBD->DCTL, USB_OTG_DCTL_SDIS); // soft disconnect peripheral (should be upper, but since it's controlled by a Device register, cannot be set before switching to device mode)
@ -74,15 +139,17 @@ usbdrv_ulpi_init(); // initialize PHY
CLEAR_BIT(USBG->GCCFG, USB_OTG_GCCFG_VBUSBSEN | USB_OTG_GCCFG_VBUSASEN);
#endif
HAL_Delay(25); // it takes time to forcing Device mode takes effect
USB_DELAY(25); // it takes time to forcing Device mode takes effect
if (!reset) {
#ifdef USB_HIGH_SPEED
// WRITE_FIELD(USBD->DCFG, USB_OTG_DCFG_DSPD, USB_LINESPEED_FULL_SPEED);
// WRITE_FIELD(USBD->DCFG, USB_OTG_DCFG_DSPD, USB_LINESPEED_HIGH_SPEED_ULPI);
WRITE_FIELD(USBD->DCFG, USB_OTG_DCFG_DSPD, USB_LINESPEED_FULL_SPEED_ULPI);
WRITE_FIELD(USBD->DCFG, USB_OTG_DCFG_DSPD, USB_LINESPEED_HIGH_SPEED_ULPI);
// WRITE_FIELD(USBD->DCFG, USB_OTG_DCFG_DSPD, USB_LINESPEED_FULL_SPEED_ULPI);
#else
WRITE_FIELD(USBD->DCFG, USB_OTG_DCFG_DSPD, USB_LINESPEED_FULL_SPEED); // there's no other possible option
#endif
}
// allow specific interrupts
uint32_t intmask = /*USB_OTG_GINTMSK_WUIM | // Wake up */
@ -94,16 +161,11 @@ usbdrv_ulpi_init(); // initialize PHY
USB_OTG_GINTMSK_RXFLVLM; // RX FIFO level (signal if non-empty)
USBG->GINTMSK = intmask;
// set global NAK on all Endpoints
// usbdrv_set_global_NAK(USB_IN, true);
// usbdrv_set_global_NAK(USB_OUT, true);
if (!reset) {
// flush Tx and Rx FIFOs
usbdrv_flush_rx_fifo();
usbdrv_flush_tx_fifo(USB_FLUSH_TX_FIFO_ALL);
// make Tx FIFO empty interrupt fire when Tx FIFO is emtpy
// SET_BIT(USBG->GAHBCFG, USB_OTG_GAHBCFG_TXFELVL);
}
// set masks for endpoint interrupts
SET_BIT(USBD->DIEPMSK, USB_OTG_DIEPMSK_XFRCM | USB_OTG_DIEPMSK_TOM | USB_OTG_DIEPMSK_ITTXFEMSK); // transfer complete, timeout and Tx FIFO empty while receiving IN for IN EPs
@ -117,16 +179,806 @@ usbdrv_ulpi_init(); // initialize PHY
SET_BIT(USBG->GAHBCFG, USB_OTG_GAHBCFG_GINT);
}
// initialize global state
void usbdrv_init_global_state() {
// clear state
memset(&gs, 0, sizeof(USBDRV_GlobalState));
// clear IN complete callbacks
memset(&cbs, 0, sizeof(USBDRV_IN_cb) * USB_NUM_OF_ENDPOINTS);
// initialize receive buffer
gs.rx_buf = rx_buf;
gs.rx_buf_level = 0;
}
// initialize USB subsystem
void usbdrv_init() {
HAL_NVIC_DisableIRQ(USB_IRQn);
USB_IRQ_DISABLE(USB_IRQ_N); // disable USB interrupts
//usbdrv_init_global_state();
usbdrv_init_global_state();
usbdrv_init_intf();
usbdrv_gpio_init();
usbdrv_periph_init();
usbdrv_periph_init(false);
usbdrv_initial_ep0_setup();
usbdrv_power_and_connect(true);
HAL_NVIC_SetPriority(USB_IRQn, 8, 0);
HAL_NVIC_EnableIRQ(USB_IRQn);
USB_IRQ_SET_PRIORITY(USB_IRQ_N, USB_IRQ_PRIORITY);
USB_IRQ_ENABLE(USB_IRQ_N);
}
void usbdrv_reset() {
USB_IRQ_DISABLE(USB_IRQ_N); // disable USB interrupts
usbdrv_hw_reset(); // hardware reset
usbdrv_init_global_state();
usbdrv_periph_init(true);
usbdrv_initial_ep0_setup();
usbdrv_power_and_connect(true);
USB_IRQ_SET_PRIORITY(USB_IRQ_N, USB_IRQ_PRIORITY);
USB_IRQ_ENABLE(USB_IRQ_N);
}
// connect to or disconnect from the bus
void usbdrv_power_and_connect(bool en) {
if (en) { // ON
CLEAR_BIT(USBD->DCTL, USB_OTG_DCTL_SDIS);
#ifdef USB_INTERNAL
SET_BIT(USBG->GCCFG, USB_OTG_GCCFG_PWRDWN); // actually, this is power UP and affects only the built-in FS transciever
#endif
} else { // OFF
SET_BIT(USBD->DCTL, USB_OTG_DCTL_SDIS);
#ifdef USB_INTERNAL
CLEAR_BIT(USBG->GCCFG, USB_OTG_GCCFG_PWRDWN);
#endif
}
}
// -------------------
// flush specific or all Tx FIFOs
void usbdrv_flush_tx_fifo(uint8_t n) {
WAIT_FOR_BIT(USBG->GRSTCTL, USB_OTG_GRSTCTL_TXFFLSH); // wait for previous request to conclude
WRITE_FIELD(USBG->GRSTCTL, USB_OTG_GRSTCTL_TXFNUM, n); // issue flush
WAIT_FOR_BIT(USBG->GRSTCTL, USB_OTG_GRSTCTL_TXFFLSH); // wait for our request to conclude
}
// flush the Rx FIFO
void usbdrv_flush_rx_fifo() {
WAIT_FOR_BIT(USBG->GRSTCTL, USB_OTG_GRSTCTL_RXFFLSH);
SET_BIT(USBG->GRSTCTL, USB_OTG_GRSTCTL_RXFFLSH); // issue flush
WAIT_FOR_BIT(USBG->GRSTCTL, USB_OTG_GRSTCTL_RXFFLSH);
}
// ---------------------
// addresses of specific DIEPTXF registers, addresses from the RM
static uint32_t *USB_pDIEPTXF[USB_NUM_OF_ENDPOINTS] = {
// FS
(uint32_t *)(((uint32_t)USBG) + 0x028), // DIEPTXF0
(uint32_t *)(((uint32_t)USBG) + 0x104), // DIEPTXF1
(uint32_t *)(((uint32_t)USBG) + 0x108), // DIEPTXF2
(uint32_t *)(((uint32_t)USBG) + 0x10C), // DIEPTXF3
// HS
(uint32_t *)(((uint32_t)USBG) + 0x120), // DIEPTXF4
(uint32_t *)(((uint32_t)USBG) + 0x124), // DIEPTXF5
};
// configure USB endpoint
void usbdrv_configure_endpoint(uint8_t ep, uint8_t dir, const USBDRV_EpConfig *cfg) {
if (dir == USB_OUT) { // ---- OUT ----
if (ep == 0) { // SPECIAL handling on EP0
WRITE_FIELD(USBOUTEP[0].DOEPCTL, USB_OTG_DOEPCTL_MPSIZ, 0); // fix in 64 bytes
WRITE_FIELD(USBOUTEP[0].DOEPTSIZ, USB_OTG_DOEPTSIZ_STUPCNT, 3); // SETUP transaction stands of three packets
} else {
WRITE_FIELD(USBOUTEP[ep].DOEPCTL, USB_OTG_DOEPCTL_EPTYP, cfg->type); // program endpoint type
WRITE_FIELD(USBOUTEP[ep].DOEPCTL, USB_OTG_DOEPCTL_MPSIZ, cfg->max_packet_size); // program maximum packet size
SET_BIT(USBOUTEP[ep].DOEPCTL, USB_OTG_DOEPCTL_USBAEP); // the endpoint is active in the current configuration
}
// ---- common for all endpoints ----
// enable interrupt
SET_BIT(USBD->DAINTMSK, 1 << (USB_OTG_DAINTMSK_OEPM_Pos + ep));
// NAK processing
if (cfg->responding_NAK) {
SET_BIT(USBOUTEP[ep].DOEPCTL, USB_OTG_DOEPCTL_SNAK); // send NAK
} else {
usbdrv_arm_OUT_endpoint(ep, cfg->max_packet_size);
}
} else { // ---- IN ----
if (ep == 0) { // SPECIAL handling on EP0
WRITE_FIELD(USBINEP[0].DIEPCTL, USB_OTG_DIEPCTL_MPSIZ, 0); // fix in 64 bytes
} else {
WRITE_FIELD(USBINEP[ep].DIEPCTL, USB_OTG_DIEPCTL_EPTYP, cfg->type); // program endpoint type
WRITE_FIELD(USBINEP[ep].DIEPCTL, USB_OTG_DIEPCTL_MPSIZ, cfg->max_packet_size); // program maximum packet size
SET_BIT(USBINEP[ep].DIEPCTL, USB_OTG_DIEPCTL_USBAEP); // the endpoint is active in the current configuration
}
// ---- common for all endpoints ----
// program FIFO corresponding FIFO number
WRITE_FIELD(USBINEP[ep].DIEPCTL, USB_OTG_DIEPCTL_TXFNUM, ep);
// store Tx FIFO size (both fields are WORD units, NOT bytes, RM is missing this information!)
uint32_t tx_fifo_config = ((cfg->fifo_size >> 2) << USB_OTG_DIEPTXF_INEPTXFD_Pos) | (cfg->fifo_address >> 2); // combine size in DWORDs and address
*(USB_pDIEPTXF[ep]) = tx_fifo_config; // save
// NAK processing
if (cfg->responding_NAK) {
SET_BIT(USBINEP[ep].DIEPCTL, USB_OTG_DIEPCTL_SNAK); // send NAK
} else {
SET_BIT(USBINEP[ep].DIEPCTL, USB_OTG_DIEPCTL_CNAK); // clear sending NAK
}
}
}
// deconfigure USB endpoint
void usbdrv_deconfigure_endpoint(uint8_t ep, uint8_t dir) {
if (ep == 0) { // EP0 cannot be deconfigured
return;
}
if (dir == USB_OUT) { // ---- OUT ----
CLEAR_BIT(USBOUTEP[ep].DOEPCTL, USB_OTG_DOEPCTL_USBAEP); // deactivate endpoint
CLEAR_BIT(USBD->DAINTMSK, 1 << (USB_OTG_DAINTMSK_OEPM_Pos + ep)); // disable interrupt
} else { // ---- IN ----
CLEAR_BIT(USBD->DAINTMSK, 1 << ep); // disable interrupt
usbdrv_flush_tx_fifo(ep); // flush Tx FIFO
SET_BIT(USBINEP[ep].DIEPCTL, USB_OTG_DIEPCTL_USBAEP); // deactivate endpoint
}
}
// ---------------------
// stall endpoint
void usbdrv_stall_endpoint(uint8_t ep, uint8_t dir, bool stall) {
USB_OTG_INEndpointTypeDef *inep = USBINEP + ep;
// USB_OTG_OUTEndpointTypeDef *outep = USBOUTEP + ep;
if (stall) {
if (dir == USB_IN) {
if (ep != 0) { // special treatment for EP0
SET_BIT(inep->DIEPCTL, USB_OTG_DIEPCTL_EPDIS); // disable endpoint
}
SET_BIT(inep->DIEPCTL, USB_OTG_DIEPCTL_STALL); // stall endpoint
}
if (ep != 0) { // EP0 cannot be disabled
// wait for endpoint disable to get effective
WAIT_FOR_nBIT(inep->DIEPINT, USB_OTG_DIEPINT_EPDISD);
CLEAR_BIT(inep->DIEPINT, USB_OTG_DIEPINT_EPDISD);
}
// flush trnasmit FIFO
usbdrv_flush_tx_fifo(ep);
} else {
if (dir == USB_IN) {
if (ep != 0) { // special treatment for EP0
SET_BIT(inep->DIEPCTL, USB_OTG_DIEPCTL_EPENA); // enable endpoint
}
CLEAR_BIT(inep->DIEPCTL, USB_OTG_DIEPCTL_STALL); // clear endpoint stall
}
}
}
// set global NAK
void usbdrv_set_global_NAK(uint8_t dir, bool en) {
if (en) {
if (dir == USB_IN) {
SET_BIT(USBD->DCTL, USB_OTG_DCTL_SGINAK);
} else {
SET_BIT(USBD->DCTL, USB_OTG_DCTL_SGONAK);
}
} else {
if (dir == USB_IN) {
SET_BIT(USBD->DCTL, USB_OTG_DCTL_CGINAK);
} else {
SET_BIT(USBD->DCTL, USB_OTG_DCTL_CGONAK);
}
}
}
// ---------------------
// fetch received data from RX FIFO to receive buffer
void usbdrv_fetch_received_data(uint8_t ep, uint16_t len) {
if (len > 0) {
volatile uint32_t *p = USBFIFO(ep);
uint16_t len_dwords = CEILDIV4(len);
for (uint16_t i = 0; i < len_dwords; i++) {
uint32_t dword = p[i];
uint16_t i0 = i * 4;
gs.rx_buf[i0] = dword & 0xFF;
gs.rx_buf[i0 + 1] = (dword >> 8) & 0xFF;
gs.rx_buf[i0 + 2] = (dword >> 16) & 0xFF;
gs.rx_buf[i0 + 3] = (dword >> 24) & 0xFF;
}
}
gs.rx_buf_level = len;
}
// ----------------
// write data to specific endpoint FIFO
uint32_t usbdrv_arm_IN_endpoint(uint8_t ep, const uint8_t *data, uint16_t len) {
// determine if a transmission is in progress or not
bool txp = READ_BIT(USBINEP[ep].DIEPCTL, USB_OTG_DIEPCTL_EPENA);
uint16_t mps = gs.ep_IN[ep].max_packet_size; // fetch maximum packet size
// determine final write size
uint32_t freeSize = USBINEP[ep].DTXFSTS * sizeof(uint32_t); // get free transmit buffer size
uint16_t writeSize = 0;
if (txp) { // transaction is in progress
uint32_t remainingBytes = USBINEP[ep].DIEPTSIZ & USB_OTG_DIEPTSIZ_XFRSIZ; // acquire remaining bytes
if (len >= mps) { // write only full-sized packets, or a short packet
uint16_t mws = MIN(freeSize, len); // maximum possible write size
uint16_t fpc = mws / mps; // full packet count
writeSize = fpc * mps; // form write size
} else { // length is less then a full packet size
if (len <= freeSize) { // packet can be written
writeSize = len;
} else {
writeSize = 0;
}
}
// adjust write size to remaining size
writeSize = MIN(remainingBytes, writeSize);
} else { // no transaction is in progress
writeSize = MIN(freeSize, len);
}
// if no transmission is in progress
if (!txp) {
// calculate packet count based on max packet size
uint16_t packet_count = 1; // for ZLPs
if (len > 0) { // if length is nonzero
packet_count = len / mps + (((len % mps) > 0) ? 1 : 0); // a transfer may contain multiple packets
}
// set zlp_next if transfer size is integer multiple of max packet size and auto ZLP is on
gs.ep_IN[ep].zlp_next = (len > 0) && ((len % mps) == 0);
// program DIEPTSIZ with transfer length
USBINEP[ep].DIEPTSIZ = /*(packet_count << USB_OTG_DIEPTSIZ_MULCNT_Pos) |*/ (packet_count << USB_OTG_DIEPTSIZ_PKTCNT_Pos) | len;
// enable endpoint and cancel responding NAK
SET_BIT(USBINEP[ep].DIEPCTL, USB_OTG_DIEPCTL_EPENA | USB_OTG_DIEPCTL_CNAK);
// enable endpoint interrupts
SET_BIT(USBD->DAINTMSK, 1 << ep);
}
// turn on interrupt generation only, if this is NOT the last FIFO write considering the current transfer
if (len > writeSize) {
USBD->DIEPEMPMSK |= ((uint32_t)(1 << ep));
}
// disable ALL USB interrupts to prevent access to specific registers (see errata)
CLEAR_BIT(USBG->GAHBCFG, USB_OTG_GAHBCFG_GINT);
// WAIT_FOR_nBIT(USBINEP[ep].DIEPINT, USB_OTG_DIEPINT_TXFE);
// https://github.com/iliasam/STM32F4_USB_MICROPHONE/blob/master/Libraries/STM32_USB_OTG_Driver/src/usb_dcd_int.c#L655
// https://github.com/iliasam/STM32F4_USB_MICROPHONE/blob/master/Libraries/STM32_USB_OTG_Driver/src/usb_core.c#L168
// push full dwords
volatile uint32_t *p = (uint32_t *)USBFIFO(ep);
uint32_t floorlen_dwords = writeSize >> 2;
for (uint16_t i = 0; i < floorlen_dwords; i++) {
uint16_t i0 = 4 * i;
uint32_t dword = data[i0] | (data[i0 + 1] << 8) | (data[i0 + 2] << 16) | (data[i0 + 3] << 24);
*p = dword;
}
// push the remaining partial dword
uint8_t rem_bytes = writeSize & 0b11;
if (rem_bytes > 0) {
uint32_t rem_dword = 0;
uint16_t rem_start = writeSize - rem_bytes;
for (int16_t i = writeSize - 1; i >= rem_start; i--) {
rem_dword = (rem_dword << 8) | data[i];
}
*p = rem_dword;
}
// unmask USB interrupts
SET_BIT(USBG->GAHBCFG, USB_OTG_GAHBCFG_GINT);
// return with written size
return writeSize;
}
// arm OUT endpoint
uint32_t usbdrv_arm_OUT_endpoint(uint8_t ep, uint16_t size) {
// arm endpoint only if it was not armed before
if (READ_BIT(USBOUTEP[ep].DOEPCTL, USB_OTG_DOEPCTL_EPENA)) {
return 0;
}
// cap size at max packet size defined for this endpoint
size = MIN(gs.ep_OUT[ep].max_packet_size, size);
// write registers
uint32_t doeptsiz = USBOUTEP[ep].DOEPTSIZ;
doeptsiz &= ~(USB_OTG_DOEPTSIZ_XFRSIZ); // clear XFERSIZ bits
doeptsiz |= USB_OTG_DOEPTSIZ_PKTCNT | size; // program DIEPTSIZ with maximum (expected) transfer length and set PCKTCNT to make ready for reception
USBOUTEP[ep].DOEPTSIZ = doeptsiz; // write value to the actual register
SET_BIT(USBOUTEP[ep].DOEPCTL, USB_OTG_DOEPCTL_EPENA | USB_OTG_DOEPCTL_CNAK); // enable endpoint and clear NAK
// return with armed size
return size;
}
void usbdrv_autoarm_OUT_endpoint(uint8_t ep) {
gs.ep_OUT[ep].autoarm = true;
}
void usbdrv_enable_endpoint_interrupt(uint8_t ep, uint8_t dir, bool en) {
uint32_t mask = 1 << (ep + ((dir == USB_OUT) ? USB_OTG_DAINTMSK_OEPM_Pos : 0));
if (en) {
SET_BIT(USBD->DAINTMSK, mask);
} else {
CLEAR_BIT(USBD->DAINTMSK, mask);
}
}
// ---------------------
// set Rx FIFO size
void usbdrv_set_rx_fifo_size(uint16_t size) {
USBG->GRXFSIZ = CEILDIV4(size);
}
// ----------------
// preload usb endpoint config
void usbdrv_preload_endpoint_config(uint8_t ep, uint8_t dir, const USBDRV_EpConfig *cfg) {
USBMSG("PRELOAD: %u %s\n", ep, dir ? "IN" : "OUT");
if (dir == USB_OUT) {
gs.ep_OUT[ep] = *cfg;
gs.ep_OUT[ep].is_configured = true;
} else {
gs.ep_IN[ep] = *cfg;
gs.ep_IN[ep].is_configured = true;
}
}
// clear endpoint config
void usbdrv_clear_endpoint_config() {
memset(&gs.ep_OUT, 0, USB_NUM_OF_ENDPOINTS * sizeof(USBDRV_EpConfig));
memset(&gs.ep_IN, 0, USB_NUM_OF_ENDPOINTS * sizeof(USBDRV_EpConfig));
}
// apply preloaded endpoint configuration
void usbdrv_apply_endpoint_config() {
for (uint8_t i = 0; i < USB_NUM_OF_ENDPOINTS; i++) {
// OUT EPs
if (gs.ep_OUT[i].is_configured) {
usbdrv_configure_endpoint(i, USB_OUT, gs.ep_OUT + i);
}
// IN EPs
if (gs.ep_IN[i].is_configured) {
usbdrv_configure_endpoint(i, USB_IN, gs.ep_IN + i);
}
}
}
// fetch endpoint configuration from descriptor dump
void usbdrv_fetch_endpoint_configuration(uint8_t config_index) {
const uint8_t *fullConfDesc = (const uint8_t *)confDescs[config_index]; // point an array to the beginning of the full configuration
const USB_ConfigurationDesc *confDesc = (const USB_ConfigurationDesc *)confDescs[config_index]; // fetch the leading configuration descriptor
// look up endpoint descriptors
const uint8_t *iter = fullConfDesc;
while (iter < (fullConfDesc + confDesc->wTotalLength)) {
if (iter[1] == UD_Endpoint) { // Endpoint descriptor found
USB_EndpointDesc epDesc;
memcpy(&epDesc, iter, iter[0]); // fetch EP descriptor by copy, since desciptor start address is NOT aligned
USBDRV_EpConfig cfg; // fill-in configuration
cfg.max_packet_size = epDesc.wMaxPacketSize;
cfg.responding_NAK = false;
cfg.type = epDesc.bmAttributes & 0b11;
cfg.service_interval = epDesc.bInterval;
// fetch endpoint address
uint8_t dir = (epDesc.bEndpointAddress >> 7);
uint8_t n = epDesc.bEndpointAddress & 0x7F;
// apply configuration
usbdrv_preload_endpoint_config(n, dir, &cfg);
}
// advance iterator using the bLength field (first byte in a descriptor)
iter += iter[0];
}
usbdrv_build_fifo();
usbdrv_apply_endpoint_config();
}
#define USB_MIN_FIFO_SIZE (64)
#define USB_FIFO_MARGIN (8)
#define USB_RX_FIFO_SETUP_RESERVATION_DWORDS (10)
#define USB_MIN_GROSS_TX_FIFO_SIZE (2 * USB_MIN_EP_FIFO_SIZE)
#if defined(USB_STM32F4)
#if USB_INTERNAL
#define USB_MIN_GROSS_RX_FIFO_SIZE (2 * USB_MIN_EP_FIFO_SIZE + USB_RX_FIFO_SETUP_RESERVATION_DWORDS * 4)
#else
#define USB_MIN_GROSS_RX_FIFO_SIZE (1024)
#endif
#elif defined(USB_STM32H7)
#define USB_MIN_GROSS_RX_FIFO_SIZE (256)
#endif
#define USBDRV_ADDR_TABLE_STR_LEN (255)
static char usbdrv_addr_table[USBDRV_ADDR_TABLE_STR_LEN + 1];
// build FIFO (compute addresses)
void usbdrv_build_fifo() {
// ---- OUT ----
uint16_t next_fifo_addr = 0x00; // Rx FIFO begins at address zero
uint16_t largest_packet_size = 0; // largest packet size
uint16_t control_ep_count = 0; // number of control endpoints
uint16_t out_ep_count = 0; // count of OUT pipes
for (uint8_t i = 0; i < USB_NUM_OF_ENDPOINTS; i++) { // gather config information
// look for largest packet size
if (gs.ep_OUT[i].is_configured) { // examine OUT EPs
largest_packet_size = MAX(largest_packet_size, gs.ep_OUT[i].max_packet_size);
out_ep_count++;
}
if (gs.ep_IN[i].is_configured) { // examine IN EPs
largest_packet_size = MAX(largest_packet_size, gs.ep_IN[i].max_packet_size);
}
// count control endpoints
if (((gs.ep_OUT[i].is_configured) && (gs.ep_OUT[i].type == UT_Control)) ||
((gs.ep_IN[i].is_configured) && (gs.ep_IN[i].type == UT_Control))) {
control_ep_count++;
}
}
// RX FIFO size calculation expression from the RM
uint16_t fifo_size_dwords = (5 * control_ep_count + 8) + (CEILDIV4(largest_packet_size) + 1) + (2 * out_ep_count) + 1; // calculate RX FIFO size in DWORDS
uint16_t fifo_size = fifo_size_dwords * 4; // calculate RX FIFO size in bytes
fifo_size = CEIL4(MAX(fifo_size, USB_MIN_GROSS_RX_FIFO_SIZE)); // RX FIFO should be at least this large
// fifo_size *= 2; // TODO:
gs.rx_fifo_size = fifo_size; // save Rx FIFO size for later
next_fifo_addr += fifo_size; // advance next FIFO address
usbdrv_set_rx_fifo_size(fifo_size); // set Rx FIFO size in hardware
uint32_t str_offset = SNPRINTF(usbdrv_addr_table, USBDRV_ADDR_TABLE_STR_LEN, "RX: 000-%03x (%u)\r\n", fifo_size - 1, fifo_size);
// ---- IN ----
for (uint8_t i = 0; i < USB_NUM_OF_ENDPOINTS; i++) {
USBDRV_EpConfig *cfg = &gs.ep_IN[i];
if (cfg->is_configured) {
cfg->fifo_size = CEIL4(MAX(USB_MIN_GROSS_TX_FIFO_SIZE, cfg->max_packet_size + 64)); // correct FIFO size if necessary
cfg->fifo_address = next_fifo_addr; // store FIFO address
cfg->zlp_next = false;
str_offset += SNPRINTF(usbdrv_addr_table + str_offset, USBDRV_ADDR_TABLE_STR_LEN - str_offset, "TX%u: %03x-%03x (%u)\r\n", i, next_fifo_addr, next_fifo_addr + cfg->fifo_size - 1, cfg->fifo_size);
// cfg->txp = false; // no transfer is in progress
next_fifo_addr += cfg->fifo_size; // advance next address
}
}
}
const char *usbdrv_get_fifo_addr_table() {
return usbdrv_addr_table;
}
// ---------------------
// create an initial setup for EP0 in both directions
void usbdrv_initial_ep0_setup() {
// setup EP0 OUT and IN
USBDRV_EpConfig ep_cfg;
ep_cfg.max_packet_size = 64;
ep_cfg.responding_NAK = false;
usbdrv_preload_endpoint_config(0, USB_OUT, &ep_cfg);
usbdrv_preload_endpoint_config(0, USB_IN, &ep_cfg);
// build FIFO
usbdrv_build_fifo();
// configure endpoints
usbdrv_apply_endpoint_config();
// turn off global NAK
usbdrv_set_global_NAK(USB_IN, false);
usbdrv_set_global_NAK(USB_OUT, false);
}
// ---------------------
void usbdrv_set_address(uint8_t addr) {
gs.address = addr;
WRITE_FIELD(USBD->DCFG, USB_OTG_DCFG_DAD, gs.address);
}
// get endpoint interrupt flag
bool usbdrv_get_endpoint_interrupt_flag(uint8_t ep, uint8_t dir) {
return (USBD->DAINT & (1 << (ep + ((dir == USB_OUT) ? USB_OTG_DAINT_OEPINT_Pos : 0)))) != 0;
}
// ---------------------
// receive packet
void usbdrv_process_rx_fifo_top(USBDRV_EventData *evt_data) {
uint32_t rxstat = USBG->GRXSTSP; // POP (not just read) latest FIFO status word
uint8_t pckt_status = READ_FIELD(rxstat, USB_OTG_GRXSTSP_PKTSTS); // read packet status
uint8_t data_pid = READ_FIELD(rxstat, USB_OTG_GRXSTSP_DPID); // read data PID
uint8_t byte_count = READ_FIELD(rxstat, USB_OTG_GRXSTSP_BCNT); // byte count
uint8_t ep_num = READ_FIELD(rxstat, USB_OTG_GRXSTSP_EPNUM); // read endpoint number
// copy to output structure
evt_data->rx.pckt_status = pckt_status;
evt_data->rx.data_pid = data_pid;
evt_data->rx.byte_count = byte_count;
evt_data->rx.ep_num = ep_num;
USBMSG("%s [%u] %u\n", FIFO_STATUS_STR[pckt_status - 1], ep_num, byte_count);
}
// always pass ALIGNED data!
__weak void usbcore_process_setup_pckt(const uint8_t *data, uint16_t size, uint8_t stage) {
return;
}
__weak void usbcore_process_nonsetup_event(USBDRV_CallbackCompound *cbcpd) {
return;
}
// process USB event
void usbdrv_process_event(uint8_t evt_code, USBDRV_EventData *evt_data) {
if (evt_code == USB_EVT_USB_RESET) { // reset takes precedence over anything else TODO
usbdrv_reset();
// invoke Reset Done notification
if (drvIntf.rst_notify != NULL) {
drvIntf.rst_notify();
}
USBMSG("RESET\n");
return;
}
switch (gs.state) {
case USB_FSM_INITIAL_WAIT_SPEEDNEG: // wait for speed negotitation to conclude
if (evt_code == USB_EVT_SPEEDNEG_DONE) {
gs.state = USB_FSM_SETUP_OPERATE; // wait for speed negotiation
}
// invoke Enumeration Done notification
if (drvIntf.enum_notify != NULL) {
uint8_t spd;
uint32_t dspd = READ_FIELD(USBD->DCFG, USB_OTG_DCFG_DSPD);
switch (dspd) {
case USB_LINESPEED_FULL_SPEED_ULPI:
case USB_LINESPEED_FULL_SPEED:
spd = USB_SPD_FULL;
break;
case USB_LINESPEED_HIGH_SPEED_ULPI:
spd = USB_SPD_HIGH;
break;
default:
spd = USB_SPD_UKWN;
break;
}
drvIntf.enum_notify(spd);
}
break;
case USB_FSM_SETUP_OPERATE: { // expect SETUP transactions first, then everything else as well
switch (evt_code) {
case USB_EVT_RECEPTION_DONE: { // reception done
USBDRV_EventData evt_data = {0};
usbdrv_process_rx_fifo_top(&evt_data); // process rx fifo top
// fetch data if data are available
if ((evt_data.rx.pckt_status == USB_PCKT_STATUS_SETUP_DATA_RECV) ||
(evt_data.rx.pckt_status == USB_PCKT_STATUS_OUT_DATA_RECV)) {
usbdrv_fetch_received_data(evt_data.rx.ep_num, evt_data.rx.byte_count); // fetch the data
}
// act according to what we have received
if (evt_data.rx.ep_num == 0) { // EP0 special treatment
int stage = -1;
if (evt_data.rx.pckt_status == USB_PCKT_STATUS_SETUP_CPLT) {
stage = UST_SETUP;
USBMSG("--SETUP\n");
} else if (evt_data.rx.pckt_status == USB_PCKT_STATUS_OUT_TRANSFER_CPLT) {
stage = UST_DATA;
USBMSG("--DATA\n");
}
// process setup packet
if (stage != -1) {
usbcore_process_setup_pckt(gs.rx_buf, gs.rx_buf_level, stage);
}
// SET_BIT(USBG->GINTMSK, USB_OTG_GINTMSK_RXFLVLM); // unmask interrupt
} else { // not EP0
if (evt_data.rx.pckt_status == USB_PCKT_STATUS_OUT_DATA_RECV) {
USBDRV_CallbackCompound cbcpd;
cbcpd.ep = evt_data.rx.ep_num;
cbcpd.dir = USB_OUT;
cbcpd.code = USB_CBC_OUT;
cbcpd.data = gs.rx_buf;
cbcpd.size = gs.rx_buf_level;
usbcore_process_nonsetup_event(&cbcpd);
}
}
break;
}
case USB_EVT_OUT_DONE: { // some OUT operations have finished
for (uint8_t ep = 0; ep < USB_NUM_OF_ENDPOINTS; ep++) {
if (gs.ep_OUT[ep].is_configured) { // if the endpoint is running
if (READ_BIT(USBOUTEP[ep].DOEPINT, USB_OTG_DOEPINT_STUP)) { // setup done
SET_BIT(USBOUTEP[ep].DOEPINT, USB_OTG_DOEPINT_STUP);
USBMSG("SETUP\n");
}
if (READ_BIT(USBOUTEP[ep].DOEPINT, USB_OTG_DOEPINT_XFRC)) { // OUT transaction done
SET_BIT(USBOUTEP[ep].DOEPINT, USB_OTG_DOEPINT_XFRC);
USBMSG("OUT\n");
if ((ep == 0) || (gs.ep_OUT[ep].autoarm)) { // EP0 must always be armed
usbdrv_arm_OUT_endpoint(ep, gs.ep_OUT[ep].max_packet_size); // arm endpoint
gs.ep_OUT[ep].autoarm = false; // clear autoarm flag
}
}
}
}
break;
}
case USB_EVT_IN_DONE: { // some IN operations have finished
// callback compound
USBDRV_CallbackCompound cbcpd;
cbcpd.dir = USB_IN;
cbcpd.data = NULL;
cbcpd.size = 0;
for (uint8_t ep = 0; ep < USB_NUM_OF_ENDPOINTS; ep++) {
cbcpd.ep = ep;
bool ep_on = USBD->DAINTMSK & (1 << ep); // decide if this endpoint is currently enable for transmission based on its endpoint mask
if (gs.ep_IN[ep].is_configured && ep_on) { // if the endpoint is running
if (READ_BIT(USBINEP[ep].DIEPINT, USB_OTG_DIEPINT_TOC)) { // timeout done
SET_BIT(USBINEP[ep].DIEPINT, USB_OTG_DIEPINT_TOC);
USBMSG("TO\n");
} else if ((USBD->DIEPEMPMSK & (1 << ep)) && READ_BIT(USBINEP[ep].DIEPINT, USB_OTG_DIEPINT_TXFE)) {
// disable FIFO empty interrupt
USBD->DIEPEMPMSK &= ~((uint32_t)(1 << ep));
cbcpd.code = USB_CBC_IN_FIFOEMPTY;
usbcore_process_nonsetup_event(&cbcpd);
} else if (READ_BIT(USBINEP[ep].DIEPINT, USB_OTG_DIEPINT_XFRC)) { // IN transaction done
SET_BIT(USBINEP[ep].DIEPINT, USB_OTG_DIEPINT_XFRC);
// disable FIFO empty interrupt
USBD->DIEPEMPMSK &= ~((uint32_t)(1 << ep));
// transfer finished
// gs.ep_IN[ep].txp = false;
// see if a ZLP transmission was queued
if (gs.ep_IN[ep].zlp_next) {
usbdrv_arm_IN_endpoint(ep, NULL, 0); // send ZLP
} else { // no ZLP
USBMSG("IN [%d]\n", ep);
// invoke callback if registered
if (cbs[ep] != NULL) {
USBDRV_IN_cb cb = cbs[ep]; // fetch function pointer
cbs[ep] = NULL; // clear callback
cb(ep); // invoke the callback
}
cbcpd.code = USB_CBC_IN_DONE;
usbcore_process_nonsetup_event(&cbcpd);
}
} else if (READ_BIT(USBINEP[ep].DIEPINT, USB_OTG_DIEPINT_ITTXFE)) { // IN endpoint IN token received with Tx FIFO empty interrupt
SET_BIT(USBINEP[ep].DIEPINT, USB_OTG_DIEPINT_ITTXFE);
// disable endpoint interrupt
usbdrv_enable_endpoint_interrupt(ep, USB_IN, false);
cbcpd.code = USB_CBC_IN_FIFOEMPTY;
usbcore_process_nonsetup_event(&cbcpd);
}
}
}
}
default:
break;
}
}
default:
break;
}
}
// ---------------------
#define PROCESS_EVENT(evt, data) usbdrv_process_event((evt), (data))
void USB_IRQ_HANDLER() {
uint32_t ints = USBG->GINTSTS;
// USB reset
if (ints & USB_OTG_GINTSTS_USBRST) {
SET_BIT(USBG->GINTSTS, USB_OTG_GINTSTS_USBRST); // clear interrupt
PROCESS_EVENT(USB_EVT_USB_RESET, NULL); // process event
}
// End of enumeration (meaning NOT the USB ENUMERATION PROCESS,
// ST calls speed negotiation the enumeration, normally this
// interrupt fires only before even communication is commenced)
if (ints & USB_OTG_GINTSTS_ENUMDNE) {
SET_BIT(USBG->GINTSTS, USB_OTG_GINTSTS_ENUMDNE); // clear interrupt
PROCESS_EVENT(USB_EVT_SPEEDNEG_DONE, NULL); // process event
// usbdrv_process_event(USB_EVT_SPEEDNEG_DONE, NULL); // process event
// usbdrv_push_event(USB_EVT_SPEEDNEG_DONE, NULL); // push event
}
// Start of Frame received (like Keep-Alive in LS mode)
if (ints & USB_OTG_GINTSTS_SOF) {
SET_BIT(USBG->GINTSTS, USB_OTG_GINTSTS_SOF); // clear interrupt
}
// USB Suspend
if (ints & USB_OTG_GINTSTS_USBSUSP) {
SET_BIT(USBG->GINTSTS, USB_OTG_GINTSTS_USBSUSP); // clear interrupt
USBMSG("SUSPEND\n");
}
// OUT endpoint interrupt
if (ints & USB_OTG_GINTSTS_OEPINT) {
PROCESS_EVENT(USB_EVT_OUT_DONE, NULL);
// usbdrv_push_event(USB_EVT_OUT_DONE, NULL);
// if (USBD->DAINT & (1 << 16)) {
// if (USBOUTEP[0].DOEPINT & USB_OTG_DOEPINT_STUP) {
// CLEAR_BIT(USBOUTEP[0].DOEPINT, USB_OTG_DOEPINT_STUP);
// }
// }
}
// RX FIFO non-empty interrupt
if (ints & USB_OTG_GINTSTS_RXFLVL) {
// SET_BIT(USBG->GINTSTS, USB_OTG_GINTSTS_RXFLVL); // clear interrupt
USBMSG("RX DONE\n");
// CLEAR_BIT(USBG->GINTMSK, USB_OTG_GINTMSK_RXFLVLM); // mask interrupt until processing is done
PROCESS_EVENT(USB_EVT_RECEPTION_DONE, NULL); // process event
// usbdrv_push_event(USB_EVT_RECEPTION_DONE, NULL); // push event
}
// IN endpoint interrupt
if (ints & USB_OTG_GINTSTS_IEPINT) {
PROCESS_EVENT(USB_EVT_IN_DONE, NULL);
// usbdrv_push_event(USB_EVT_IN_DONE, NULL);
}
return;
}

View File

@ -1,35 +1,309 @@
#ifndef STM32_USB_DRV
#define STM32_USB_DRV
#include "usb_common_defs.h"
#include "common_defs.h"
// Select IO crossbar advanced function
#if defined(USB_STM32H7)
#ifndef STM32H723xx
#define USB_GPIO_AF (GPIO_AF10_OTG2_FS)
#else
// #define USB_GPIO_AF (GPIO_AF10_OTG1_HS)
#endif
#elif defined(USB_STM32F4)
#ifdef USB_HIGH_SPEED
#define USB_GPIO_AF (GPIO_AF10_OTG_HS)
#else
#define USB_GPIO_AF (GPIO_AF10_OTG_FS)
#endif
#include "../../usb_common_types.h"
#include "../../usb_driver_common.h"
// number of supported endpoints
#define USB_NUM_OF_ENDPOINTS (6) // set it to the maximum that this type of module can support
// non isochronous transfers
#define USB_MAX_FS_PCKT_SIZE_NON_ISOCHRONOUS (64)
#define USB_MAX_HS_PCKT_SIZE_NON_ISOCHRONOUS (512)
// isochronous transfers
#define USB_MAX_FS_PCKT_SIZE_ISOCHRONOUS (1023)
#define USB_MIN_EP_FIFO_SIZE (64)
// Unfortunately this cannot be enabled, since the USB controller
// generates such enormous amounts of interrupts, so that no other
// task can run along the USB processing.
#define USB_EVENT_PROCESSING_IN_OS_THREAD (0)
#if USB_EVENT_PROCESSING_IN_OS_THREAD
#include <cmsis_os2.h>
#endif
// Set TOCAL and TRDT values (see Ref. Man.)
#if defined(USB_STM32H7) /*|| defined(USB_HIGH_SPEED)*/
#define TOCAL_VALUE (0x00)
#define TRDT_VALUE (0x05)
#elif defined(USB_STM32F4)
#if !defined(USB_HIGH_SPEED)
#define TOCAL_VALUE (0x07)
#define TRDT_VALUE (0x06)
#else
#define TOCAL_VALUE (0x07)
#define TRDT_VALUE (0x09)
#endif
// endpoint configuration structure
typedef struct {
uint16_t max_packet_size; // maximum packet size
bool8_t responding_NAK; // indicates if endpoint responds with NAK
uint8_t type; // endpoint type
uint8_t service_interval; // service interval
// calculated values
uint8_t is_configured; // the endpoint is in use
uint16_t fifo_address; // address in the FIFO
uint16_t fifo_size; // FIFO size
bool8_t zlp_next; // indicates, that ZLP should be transmitted at the end of the current transfer (for IN endpoints)
bool8_t autoarm; // automatically arm endpoint (for OUT endpoints)
} USBDRV_EpConfig;
typedef enum {
USB_FSM_INITIAL_WAIT_SPEEDNEG = 0, // initial state, right after reset, wait for speed negotiation, must be ZERO!
USB_FSM_SETUP_OPERATE, // ready to perform setup operations
} USBDRV_FsmState;
typedef enum {
USB_EVT_USB_RESET, // bus reset received
USB_EVT_SPEEDNEG_DONE, // linespeed negotiation (ST calls "enumeration") done
USB_EVT_RECEPTION_DONE, // received packet is waiting to be fetched from the Rx FIFO
USB_EVT_OUT_DONE, // something has happened on an OUT endpoint
USB_EVT_IN_DONE, // previously armed IN endpoint has finished packet transmission
} USBDRV_EventCode;
// endpoint event
typedef enum {
USB_EPEVT_IDLE = 0x00, // endpoint is IDLE
USB_EPEVT_ARMED, // endpoint is armed for transmission
USB_EPEVT_STALLED, // endpoint is stalled
USB_EPEVT_NAK // endpoint responds NAK regardless of FIFO level
} USBDRV_EndpointEvent;
// USB device state
typedef struct {
USBDRV_EpConfig ep_OUT[USB_NUM_OF_ENDPOINTS]; // OUT endpoint configs
USBDRV_EpConfig ep_IN[USB_NUM_OF_ENDPOINTS]; // IN endpoint configs
uint16_t rx_fifo_size; // Rx FIFO size in bytes
uint16_t state; // FSM state
uint8_t *rx_buf; // pointer to the receive buffer (this way declaration can be separated)
uint16_t rx_buf_level; // fill level of the rx buffer
uint8_t address; // device address
#if USB_EVENT_PROCESSING_IN_OS_THREAD
osMessageQueueId_t event_queue; // event queue
osThreadId_t th; // event processing thread
#endif
} USBDRV_GlobalState;
// USB received packet status
typedef enum { USB_PCKT_STATUS_GLOBAL_OUT_NAK = 0b0001,
USB_PCKT_STATUS_OUT_DATA_RECV = 0b0010,
USB_PCKT_STATUS_OUT_TRANSFER_CPLT = 0b0011,
USB_PCKT_STATUS_SETUP_CPLT = 0b0100,
USB_PCKT_STATUS_SETUP_DATA_RECV = 0b0110,
} USBDRV_PcktStatus;
#define USB_FLUSH_TX_FIFO_ALL (0b10000)
// event data
typedef union {
struct {
uint8_t pckt_status; // read packet status
uint8_t data_pid; // data PID
uint8_t byte_count; // byte count
uint8_t ep_num; // read endpoint number
} rx; // receive event data
} USBDRV_EventData;
// event compound for queueing
typedef struct {
uint32_t code; // event code
USBDRV_EventData data; // accompaining event data
} USBDRV_EventCompound;
// ------------
/**
* Fully initialize USB driver.
*/
void usbdrv_init();
/**
* Reset USB driver.
*/
void usbdrv_reset();
/**
* Initialize driver interface.
*/
void usbdrv_init_intf();
/**
* USB peripheral initialization.
*
* @param reset only perform an after-reset reinitialization
*/
void usbdrv_periph_init(bool reset);
/**
* Flush specific TX FIFO.
*
* @param n index of the TX FIFO
*/
void usbdrv_flush_tx_fifo(uint8_t n);
/**
* Flush specific RX FIFO.
*/
void usbdrv_flush_rx_fifo();
/**
* Power down or up the USB peripheral. Also control built-in transciever.
*
* @param en power on/off
*/
void usbdrv_power_and_connect(bool en);
/**
* Configure USB Endpoint.
*
* @param ep index of the endpoint
* @param dir direction of the endpoint to be configured
* @param cfg pointer to the configuration details
*/
void usbdrv_configure_endpoint(uint8_t ep, uint8_t dir, const USBDRV_EpConfig *cfg);
/**
* Deconfigure a specific USB Endpoint.
*
* @param ep index of the endpoint
* @param dir direction of the endpoint to be deconfigured
*/
void usbdrv_deconfigure_endpoint(uint8_t ep, uint8_t dir);
/**
* Stall a particular USB Endpoint.
*
* @param ep index of the endpoint to be stalled
* @param dir direction of the endpoint
* @param stall enable/disable stalling
*/
void usbdrv_stall_endpoint(uint8_t ep, uint8_t dir, bool stall);
/**
* Implement or rescind responding NAK globally in the chosen direction.
*
* @param dir communication direction
* @param en enable/disable NAK responses
*/
void usbdrv_set_global_NAK(uint8_t dir, bool en);
/**
* Fetch data corresponding to a single Endpoint.
*
* @param ep index of endpoint
* @param len maximum length of data to be fetched
*/
void usbdrv_fetch_received_data(uint8_t ep, uint16_t len);
/**
* Setup and prepare Endpoint to transfer data towards the host.
* May be called multiple times in a single transmission, since
* large messages do not have to fit into a single buffer.
*
* @param ep index of the Endpoint
* @param data pointer to the data
* @param len length of the data to be read
* @return number of bytes read from the data buffer
*/
uint32_t usbdrv_arm_IN_endpoint(uint8_t ep, const uint8_t *data, uint16_t len);
/**
* Prepare Endpoint to expect data reception from the host.
*
* @param ep index of the Endpoint
* @param size expected reception length
* @return message length that the endpoint can support during next reception
*/
uint32_t usbdrv_arm_OUT_endpoint(uint8_t ep, uint16_t size);
/**
* Enable or disable OUT Endpoint auto arming.
* Right after a transaction completes the USB core
* automatically prepares the endpoint for the next
* reception if this feature is enabled.
*
* @param ep index of the Endpoint
*/
void usbdrv_autoarm_OUT_endpoint(uint8_t ep);
/**
* Mask or unmask Endpoint interrupt generation.
*
* @param ep index of the Endpoint
* @param dir direction of the Endpoint
* @param en enable/disable interrupt
*/
void usbdrv_enable_endpoint_interrupt(uint8_t ep, uint8_t dir, bool en);
/**
* Set the shared FIFO size for all receptions.
* (Shared among all OUT endpoints.)
* Size of multiple of 4 are recommended. Values
* not obeying this will be rounded up.
*
* @param size FIFO size in BYTES
*/
void usbdrv_set_rx_fifo_size(uint16_t size);
/**
* Preload Endpoint config. Do not write configuration
* to the hardware right away, just buffer them in.
*
* @param ep index of the Endpoint
* @param dir direction of the Endpint
* @param cfg pointer to Endpoint configuration
*/
void usbdrv_preload_endpoint_config(uint8_t ep, uint8_t dir, const USBDRV_EpConfig *cfg);
/**
* Clear ALL Endpoints' preload configurations.
* Does NOT clear configuration in the hardware!
*/
void usbdrv_clear_endpoint_config();
/**
* Apply preloaded Endpoint configuration, write
* Endpoint config to the hardware.
*/
void usbdrv_apply_endpoint_config();
/**
* Select a specific configuration from the descriptor
* dump, preload Endpoint settings and finally apply them.
*
* @param config_index configuration index
*/
void usbdrv_fetch_endpoint_configuration(uint8_t config_index);
/**
* Construct FIFO considering configured Endpoints.
*/
void usbdrv_build_fifo();
/**
* Apply an initial EP0 setup.
*/
void usbdrv_initial_ep0_setup();
/**
* Set USB device address.
*
* @param addr device address
*/
void usbdrv_set_address(uint8_t addr);
/**
* Get driver interface.
*
* @return pointer to the driver interface
*/
USB_DrvIntf * usbdrv_get_intf();
/**
* Register callback for IN transaction complete.
*
* @param ep index of the Endpoint
* @param cb pointer to the callback function
*/
void usbdrv_register_IN_complete_cb(uint8_t ep, USBDRV_IN_cb cb);
#endif /* STM32_USB_DRV */

66
usb.c
View File

@ -2,35 +2,24 @@
#include <memory.h>
#include "usb_callback_event.h"
#include "usb_common.h"
#include "usb_driver_common.h"
// #include "utils/gen_queue.h"
#include FLATUSB_DESCRIPTOR_HEADER
#include "usb_driver.h"
// ---------------
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
#ifdef USBDBGMSG
#include "../cli/stdio_uart.h"
#define USBMSG(...) MSG(__VA_ARGS__)
#else
#define USBMSG(...)
#endif
// ---------------
#ifndef USB_HIGH_SPEED
#define USB_RX_BUF_SIZE (USB_MAX_FS_PCKT_SIZE_NON_ISOCHRONOUS)
#else
#define USB_RX_BUF_SIZE (USB_MAX_HS_PCKT_SIZE_NON_ISOCHRONOUS)
#endif
#define USBDRV_ARM_IN_ZLP(ep) drv->arm_IN((ep), NULL, 0)
#define USB_RX_BUF_SIZE (512) // FIXME
static uint8_t tx_assembly_buf[USB_RX_BUF_SIZE] DWORD_ALIGN; // buffer for assembling packets
// ---------------
@ -67,12 +56,29 @@ typedef struct {
} USB_SetupTransferState;
static USB_SetupTransferState stups;
static USB_DrvIntf *drv;
void usbcore_init() {
void usbcore_reset() {
// init state
memset(&stups, 0, sizeof(USB_SetupTransferState));
}
static void usbcore_rst_notify() {
usbcore_reset();
}
static void usbcore_enum_notify(uint8_t spd) {
(void)spd;
}
void usbcore_init(USB_DrvIntf *drvIntf) {
usbcore_reset(); // reset USB Core
drv = drvIntf; // store USB driver interface assignments
drv->rst_notify = usbcore_rst_notify; // assign Reset Done callback
drv->enum_notify = usbcore_enum_notify; // assign Enumeration Done callback
}
void usbcore_process_setup_pckt(const uint8_t *data, uint16_t size, uint8_t stage) {
// MSG("STUP: %u, %s\n", size, stage == UST_SETUP ? "SETUP" : "DATA");
@ -112,7 +118,7 @@ void usbcore_process_setup_pckt(const uint8_t *data, uint16_t size, uint8_t stag
}
// expect status transaction to follow the data phase
usbdrv_arm_OUT_endpoint(0, 64);
drv->arm_OUT(0, 64);
// only continue processing if the transaction has concluded
if (!stups.out_complete) {
@ -155,26 +161,26 @@ void usbcore_process_setup_pckt(const uint8_t *data, uint16_t size, uint8_t stag
break;
// Descriptors not implemented
default:
usbdrv_stall_endpoint(0, USB_IN, true); // stall IN, since request in unsupported
drv->stall(0, USB_IN, true); // stall IN, since request in unsupported
break;
}
// arm data transmission
usbdrv_arm_IN_endpoint(0, data, sz);
drv->arm_IN(0, data, sz);
break;
}
case UREQ_SetAddress: { // SET ADDRESS
uint8_t addr = stups.setup_req.wValue & 0x7F;
usbdrv_set_address(addr);
usbdrv_arm_OUT_endpoint(0, 64); // prepare for data OUT stage
drv->set_address(addr);
drv->arm_OUT(0, 64); // prepare for data OUT stage
USBDRV_ARM_IN_ZLP(0); // ZLP IN
break;
}
case UREQ_SetConfiguration: // SET CONFIGURATION
{
uint8_t config_id = stups.setup_req.wValue & 0xFF;
usbdrv_fetch_endpoint_configuration(config_id - 1);
drv->set_config(config_id - 1);
USBDRV_ARM_IN_ZLP(0);
break;
}
@ -196,7 +202,7 @@ void usbcore_process_setup_pckt(const uint8_t *data, uint16_t size, uint8_t stag
usb_event_callback(&cbevt);
if (cbevt.reply_valid) {
usbdrv_arm_IN_endpoint(0, cbevt.reply_data, cbevt.reply_size);
drv->arm_IN(0, cbevt.reply_data, cbevt.reply_size);
}
break;
}
@ -241,21 +247,25 @@ void usbcore_process_nonsetup_event(USBDRV_CallbackCompound *cbcpd) {
// for OUT events, check the autoarm flag
if (cbevt.dir == USB_OUT) {
if (cbevt.arm_out_endpoint) {
usbdrv_autoarm_OUT_endpoint(cbcpd->ep);
drv->autoarm(cbcpd->ep);
}
}
}
}
void usbcore_wake_up_endpoint(uint8_t ep, uint8_t dir) {
usbdrv_enable_endpoint_interrupt(ep, dir, true);
drv->en_ep_irq(ep, dir, true);
}
void usbcore_register_IN_callback(uint8_t ep, USBDRV_IN_cb cb) {
drv->reg_IN_cb(ep, cb);
}
uint32_t usbcore_schedule_transmission(uint8_t ep, const uint8_t *data, uint16_t size) {
usbdrv_enable_endpoint_interrupt(ep, USB_IN, true);
return usbdrv_arm_IN_endpoint(ep, data, size);
drv->en_ep_irq(ep, USB_IN, true);
return drv->arm_IN(ep, data, size);
}
uint32_t usbcore_schedule_reception(uint8_t ep, uint16_t size) {
return usbdrv_arm_OUT_endpoint(ep, size);
return drv->arm_OUT(ep, size);
}

7
usb.h
View File

@ -1,11 +1,14 @@
#ifndef CORE_USB_USB
#define CORE_USB_USB
#include "usb_callback_event.h"
#include <stdint.h>
void usbcore_init(); // initialize USB core
#include "usb_driver_common.h"
void usbcore_init(USB_DrvIntf *drvIntf); // initialize USB core
uint32_t usbcore_schedule_transmission(uint8_t ep, const uint8_t *data, uint16_t size); // write data to endpoint, return with number of bytes actually written
uint32_t usbcore_schedule_reception(uint8_t ep, uint16_t size); // expect data coming from the endpoint
void usbcore_wake_up_endpoint(uint8_t ep, uint8_t dir); // wake up endpoint
void usbcore_register_IN_callback(uint8_t ep, USBDRV_IN_cb cb); // register IN complete callback
#endif /* CORE_USB_USB */

View File

@ -4,12 +4,14 @@
#include "usb_common_types.h"
#include "usb_device_types.h"
#define USB_DELAY(t) for (uint64_t i = 0; i < (t) * 10000; i++) { asm("nop"); }
#define READ_FIELD(r,f) (((r) & (f##_Msk)) >> (f##_Pos))
#define WRITE_FIELD(r,f,v) ((r) = ((r) & ~(f##_Msk)) | (v << (f##_Pos)))
#define WAIT_FOR_BIT(r,b) while ((r) & (b)) {}
#define WAIT_FOR_BIT_DELAY(r,b,d) while ((r) & (b)) { HAL_Delay((d)); }
#define WAIT_FOR_BIT_DELAY(r,b,d) while ((r) & (b)) { USB_DELAY((d)); }
#define WAIT_FOR_nBIT(r,b) while (!((r) & (b))) {}
#define WAIT_FOR_nBIT_DELAY(r,b,d) while (!((r) & (b))) { HAL_Delay((d)); }
#define WAIT_FOR_nBIT_DELAY(r,b,d) while (!((r) & (b))) { USB_DELAY((d)); }
#define DWORD_ALIGN __attribute__((aligned(4)))

57
usb_driver_common.h Normal file
View File

@ -0,0 +1,57 @@
#ifndef FLATUSB_USB_DRIVER_INTERFACE
#define FLATUSB_USB_DRIVER_INTERFACE
#include <stdbool.h>
#include <stdint.h>
typedef enum {
USB_SPD_UKWN = 0,
USB_SPD_LOW = 1,
USB_SPD_FULL = 2,
USB_SPD_HIGH = 3
} USBDRV_LineSpeed;
typedef void (*USBDRV_IN_cb)(uint8_t ep);
typedef struct {
// USB CORE -> USB DRIVER
void (*init)(); // initialize USB driver
void (*reset)(); // reset USB driver
void (*stall)(uint8_t ep, uint8_t dir, bool stall); // stall the endpoint
uint32_t (*arm_IN)(uint8_t ep, const uint8_t *data, uint16_t len); // arm IN endpoint
uint32_t (*arm_OUT)(uint8_t ep, uint16_t len); // arm OUT endpoint
void (*set_address)(uint8_t addr); // set device address
void (*set_config)(uint8_t ci); // make the chosen setting operational
void (*autoarm)(uint8_t ep); // enable OUT autoarm
void (*en_ep_irq)(uint8_t ep, uint8_t dir, bool en); // enable endpoint interrupt
void (*reg_IN_cb)(uint8_t ep, USBDRV_IN_cb cb); // register a callback for IN transaction complete
// USB DRIVER -> USB CORE
void (*rst_notify)(); // notify USB core of a bus issued reset
void (*enum_notify)(uint8_t spd); // notify the USB core that speed negotiation has concluded
} USB_DrvIntf;
#ifndef USBDBGMSG
#define USBMSG(...)
#endif
// callback codes
typedef enum {
USB_CBC_OUT, // OUT done!
USB_CBC_IN_DONE, // IN done!
USB_CBC_IN_FIFOEMPTY, // could not serve IN request, since Tx FIFO was empty
} USBDRV_CallbackCode;
// callback compound
typedef struct {
uint8_t ep : 4; // endpoint number
uint8_t dir : 1; // direction
uint8_t code : 3; // event code
uint16_t size; // data size
const uint8_t *data; // data
} USBDRV_CallbackCompound;
typedef enum { UST_SETUP,
UST_DATA } USBDRV_ControlTfStage;
#endif /* FLATUSB_USB_DRIVER_INTERFACE */